Calculadora de fracción a decimal
Convertir fracciones en decimales paso a paso
La calculadora convertirá la fracción dada (propia o impropia) o el número mixto en un decimal (posiblemente, periódico o repetido), mostrando los pasos.
Solution
Your input: convert $$$\frac{500}{18}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{2}&\phantom{7}&\phantom{.}&\phantom{7}&\phantom{7}&\phantom{7}\end{array}&\\18&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}5&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$18$$$'s are in $$$5$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$5-18 \cdot 0 = 5 - 0= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Fuchsia}{0}&\phantom{2}&\phantom{7}&\phantom{.}&\phantom{7}&\phantom{7}&\phantom{7}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Fuchsia}{5}& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$18$$$'s are in $$$50$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$50-18 \cdot 2 = 50 - 36= 14$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{DarkCyan}{2}&\phantom{7}&\phantom{.}&\phantom{7}&\phantom{7}&\phantom{7}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}5&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkCyan}{5}&\color{DarkCyan}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$18$$$'s are in $$$140$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$140-18 \cdot 7 = 140 - 126= 14$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&2&\color{DarkMagenta}{7}&\phantom{.}&\phantom{7}&\phantom{7}&\phantom{7}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}5&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&\phantom{.}\\\hline\phantom{lll}\color{DarkMagenta}{1}&\color{DarkMagenta}{4}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&6&\phantom{.}\\\hline\phantom{lll}&1&4&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$18$$$'s are in $$$140$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$140-18 \cdot 7 = 140 - 126= 14$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&2&7&.&\color{Crimson}{7}&\phantom{7}&\phantom{7}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}5&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&6&\phantom{.}\\\hline\phantom{lll}&\color{Crimson}{1}&\color{Crimson}{4}&\phantom{.}&\color{Crimson}{0}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&2&\phantom{.}&6\\\hline\phantom{lll}&&1&\phantom{.}&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$18$$$'s are in $$$140$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$140-18 \cdot 7 = 140 - 126= 14$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&2&7&.&7&\color{Peru}{7}&\phantom{7}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}5&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&6&\phantom{.}\\\hline\phantom{lll}&1&4&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&2&\phantom{.}&6\\\hline\phantom{lll}&&\color{Peru}{1}&\phantom{.}&\color{Peru}{4}&\color{Peru}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&\phantom{.}&2&6\\\hline\phantom{lll}&&&&1&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$18$$$'s are in $$$140$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$140-18 \cdot 7 = 140 - 126= 14$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&2&7&.&7&7&\color{OrangeRed}{7}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}5&0&0&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&\phantom{.}\\\hline\phantom{lll}1&4&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&6&\phantom{.}\\\hline\phantom{lll}&1&4&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&2&\phantom{.}&6\\\hline\phantom{lll}&&1&\phantom{.}&4&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&\phantom{.}&2&6\\\hline\phantom{lll}&&&&\color{OrangeRed}{1}&\color{OrangeRed}{4}&\color{OrangeRed}{0}\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&1&2&6\\\hline\phantom{lll}&&&&&1&4\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{500}{18}=27.7 \overline{7}$$$
Answer: $$$\frac{500}{18}=27.7\overline{7}$$$