Calculadora de fracción a decimal

Convertir fracciones en decimales paso a paso

La calculadora convertirá la fracción dada (propia o impropia) o el número mixto en un decimal (posiblemente, periódico o repetido), mostrando los pasos.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{1100}{18}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\18&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$18$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-18 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Fuchsia}{0}&\phantom{0}&\phantom{6}&\phantom{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Fuchsia}{1}& 1 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$18$$$'s are in $$$11$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$11-18 \cdot 0 = 11 - 0= 11$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{Red}{0}&\phantom{6}&\phantom{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Red}{1}&\color{Red}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$18$$$'s are in $$$110$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$110-18 \cdot 6 = 110 - 108= 2$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{Green}{6}&\phantom{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{1}&\color{Green}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$18$$$'s are in $$$20$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$20-18 \cdot 1 = 20 - 18= 2$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&\color{Peru}{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&\color{Peru}{2}&\color{Peru}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}\\\hline\phantom{lll}&&&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$18$$$'s are in $$$20$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$20-18 \cdot 1 = 20 - 18= 2$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&1&.&\color{SaddleBrown}{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}\\\hline\phantom{lll}&&&\color{SaddleBrown}{2}&\phantom{.}&\color{SaddleBrown}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8\\\hline\phantom{lll}&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$18$$$'s are in $$$20$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$20-18 \cdot 1 = 20 - 18= 2$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&1&.&1&\color{Chartreuse}{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}\\\hline\phantom{lll}&&&2&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8\\\hline\phantom{lll}&&&&&\color{Chartreuse}{2}&\color{Chartreuse}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&8\\\hline\phantom{lll}&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 7

How many $$$18$$$'s are in $$$20$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$20-18 \cdot 1 = 20 - 18= 2$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&1&.&1&1&\color{OrangeRed}{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}\\\hline\phantom{lll}&&&2&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&8\\\hline\phantom{lll}&&&&&&\color{OrangeRed}{2}&\color{OrangeRed}{0}\\&&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&8\\\hline\phantom{lll}&&&&&&&2\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1100}{18}=61.1 \overline{1}$$$

Answer: $$$\frac{1100}{18}=61.1\overline{1}$$$


Please try a new game Rotatly