Calculadora de fracción a decimal
Convertir fracciones en decimales paso a paso
La calculadora convertirá la fracción dada (propia o impropia) o el número mixto en un decimal (posiblemente, periódico o repetido), mostrando los pasos.
Solution
Your input: convert $$$\frac{11500}{150}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\phantom{7}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\150&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}1&1&5&0&0\end{array}}&\\&\begin{array}{lllll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$150$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-150 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}\color{Blue}{0}&\phantom{0}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}\color{Blue}{1}& 1 \downarrow&5&0&0&.&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$150$$$'s are in $$$11$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$11-150 \cdot 0 = 11 - 0= 11$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&\color{Green}{0}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&1& 5 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{1}&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$150$$$'s are in $$$115$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$115-150 \cdot 0 = 115 - 0= 115$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&\color{Purple}{0}&\phantom{7}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&1&5& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{1}&\color{Purple}{1}&\color{Purple}{5}&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$150$$$'s are in $$$1150$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$1150-150 \cdot 7 = 1150 - 1050= 100$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&0&\color{Brown}{7}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&1&5&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}\color{Brown}{1}&\color{Brown}{1}&\color{Brown}{5}&\color{Brown}{0}&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$150$$$'s are in $$$1000$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$1000-150 \cdot 6 = 1000 - 900= 100$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&0&7&\color{DarkMagenta}{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&1&5&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&5&0&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&0&\phantom{.}\\\hline\phantom{lll}&\color{DarkMagenta}{1}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&0&\phantom{.}\\\hline\phantom{lll}&&1&0&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$150$$$'s are in $$$1000$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$1000-150 \cdot 6 = 1000 - 900= 100$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&0&7&6&.&\color{Chocolate}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&1&5&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&5&0&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&0&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&0&\phantom{.}\\\hline\phantom{lll}&&\color{Chocolate}{1}&\color{Chocolate}{0}&\color{Chocolate}{0}&\phantom{.}&\color{Chocolate}{0}\\&-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0&0\\\hline\phantom{lll}&&&1&0&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$150$$$'s are in $$$1000$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$1000-150 \cdot 6 = 1000 - 900= 100$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&0&7&6&.&6&\color{Violet}{6}&\phantom{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&1&5&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&5&0&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&0&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&0&\phantom{.}\\\hline\phantom{lll}&&1&0&0&\phantom{.}&0\\&-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0&0\\\hline\phantom{lll}&&&\color{Violet}{1}&\color{Violet}{0}&\phantom{.}&\color{Violet}{0}&\color{Violet}{0}\\&&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&0&\phantom{.}&0\\\hline\phantom{lll}&&&&1&\phantom{.}&0&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 8
How many $$$150$$$'s are in $$$1000$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$1000-150 \cdot 6 = 1000 - 900= 100$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&0&7&6&.&6&6&\color{Red}{6}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&1&5&0&0&.&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&5&0&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&5&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&0&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&0&\phantom{.}\\\hline\phantom{lll}&&1&0&0&\phantom{.}&0\\&-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0&0\\\hline\phantom{lll}&&&1&0&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&0&\phantom{.}&0\\\hline\phantom{lll}&&&&\color{Red}{1}&\phantom{.}&\color{Red}{0}&\color{Red}{0}&\color{Red}{0}\\&&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&9&\phantom{.}&0&0\\\hline\phantom{lll}&&&&&&1&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{11500}{150}=76.6 \overline{6}$$$
Answer: $$$\frac{11500}{150}=76.6\overline{6}$$$