Calculadora de fracción a decimal
Convertir fracciones en decimales paso a paso
La calculadora convertirá la fracción dada (propia o impropia) o el número mixto en un decimal (posiblemente, periódico o repetido), mostrando los pasos.
Solution
Your input: convert $$$\frac{1300}{10}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{1}&\phantom{3}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\10&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&3&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$10$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-10 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{DarkMagenta}{0}&\phantom{1}&\phantom{3}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{10}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{DarkMagenta}{1}& 3 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$10$$$'s are in $$$13$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$13-10 \cdot 1 = 13 - 10= 3$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{BlueViolet}{1}&\phantom{3}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{10}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{BlueViolet}{1}&\color{BlueViolet}{3}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&\phantom{.}\\\hline\phantom{lll}&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$10$$$'s are in $$$30$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$30-10 \cdot 3 = 30 - 30= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&\color{Purple}{3}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{10}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&\phantom{.}\\\hline\phantom{lll}&\color{Purple}{3}&\color{Purple}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&3&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$10$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-10 \cdot 0 = 0 - 0= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&3&\color{Green}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{10}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&\phantom{.}\\\hline\phantom{lll}&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&3&0&\phantom{.}\\\hline\phantom{lll}&&\color{Green}{0}&\color{Green}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$10$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-10 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&3&0&.&\color{Fuchsia}{0}\end{array}&\\\color{Magenta}{10}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&\phantom{.}\\\hline\phantom{lll}&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&3&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Fuchsia}{0}&\phantom{.}&\color{Fuchsia}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{1300}{10}=130.0$$$
Answer: $$$\frac{1300}{10}=130.0$$$