Proyección vectorial de $$$\left\langle -8, 3\right\rangle$$$ sobre $$$\left\langle -6, -2\right\rangle$$$
Calculadora relacionada: Calculadora de proyección escalar
Tu aportación
Calcula la proyección vectorial de $$$\mathbf{\vec{v}} = \left\langle -8, 3\right\rangle$$$ sobre $$$\mathbf{\vec{u}} = \left\langle -6, -2\right\rangle$$$.
Solución
La proyección vectorial viene dada por $$$\operatorname{proj}_{\mathbf{\vec{u}}}\left(\mathbf{\vec{v}}\right) = \frac{\mathbf{\vec{v}}\cdot \mathbf{\vec{u}}}{\mathbf{\left\lvert\vec{u}\right\rvert}^{2}} \mathbf{\vec{u}}.$$$
$$$\mathbf{\vec{v}}\cdot \mathbf{\vec{u}} = 42$$$ (para conocer los pasos, consulte calculadora de producto escalar).
$$$\mathbf{\left\lvert\vec{u}\right\rvert} = 2 \sqrt{10}$$$ (para conocer los pasos, consulte calculadora de magnitud vectorial).
Por lo tanto, la proyección vectorial es $$$\operatorname{proj}_{\mathbf{\vec{u}}}\left(\mathbf{\vec{v}}\right) = \frac{42}{\left(2 \sqrt{10}\right)^{2}}\cdot \left\langle -6, -2\right\rangle = \frac{21}{20}\cdot \left\langle -6, -2\right\rangle = \left\langle - \frac{63}{10}, - \frac{21}{10}\right\rangle$$$ (para conocer los pasos, consulte calculadora de multiplicación escalar vectorial).
Respuesta
La proyección vectorial es $$$\left\langle - \frac{63}{10}, - \frac{21}{10}\right\rangle = \left\langle -6.3, -2.1\right\rangle$$$A.