Producto escalar de $$$\left\langle 1, 0, 1\right\rangle$$$ y $$$\left\langle 0, 3, 4\right\rangle$$$

La calculadora encontrará el producto escalar de dos vectores $$$\left\langle 1, 0, 1\right\rangle$$$ y $$$\left\langle 0, 3, 4\right\rangle$$$, mostrando los pasos.
$$$\langle$$$ $$$\rangle$$$
Separados por comas.
$$$\langle$$$ $$$\rangle$$$
Separados por comas.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Calcular $$$\left\langle 1, 0, 1\right\rangle\cdot \left\langle 0, 3, 4\right\rangle$$$.

Solución

El producto escalar está dado por $$$\mathbf{\vec{u}}\cdot \mathbf{\vec{v}} = \sum_{i=1}^{n} u_{i} v_{i}$$$.

Por lo tanto, lo que debemos hacer es multiplicar las coordenadas correspondientes y luego sumar los resultados: $$$\left\langle 1, 0, 1\right\rangle\cdot \left\langle 0, 3, 4\right\rangle = \left(1\right)\cdot \left(0\right) + \left(0\right)\cdot \left(3\right) + \left(1\right)\cdot \left(4\right) = 4.$$$

Respuesta

$$$\left\langle 1, 0, 1\right\rangle\cdot \left\langle 0, 3, 4\right\rangle = 4$$$A