Producto escalar de $$$\left\langle 1, 0, 1\right\rangle$$$ y $$$\left\langle 0, 3, 4\right\rangle$$$
Tu entrada
Calcular $$$\left\langle 1, 0, 1\right\rangle\cdot \left\langle 0, 3, 4\right\rangle$$$.
Solución
El producto escalar está dado por $$$\mathbf{\vec{u}}\cdot \mathbf{\vec{v}} = \sum_{i=1}^{n} u_{i} v_{i}$$$.
Por lo tanto, lo que debemos hacer es multiplicar las coordenadas correspondientes y luego sumar los resultados: $$$\left\langle 1, 0, 1\right\rangle\cdot \left\langle 0, 3, 4\right\rangle = \left(1\right)\cdot \left(0\right) + \left(0\right)\cdot \left(3\right) + \left(1\right)\cdot \left(4\right) = 4.$$$
Respuesta
$$$\left\langle 1, 0, 1\right\rangle\cdot \left\langle 0, 3, 4\right\rangle = 4$$$A