Simplifica $$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right)$$$

La calculadora simplificará la expresión booleana $$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right)$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de tablas de verdad

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Simplifica la expresión booleana $$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right).$$$

Solución

Aplica la propiedad conmutativa:

$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot {\color{red}\left(\left(X \cdot Y\right) + Z\right)}\right) = \left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot {\color{red}\left(Z + \left(X \cdot Y\right)\right)}\right)$$

Aplica la ley de absorción $$$x \cdot \left(x + y\right) = x$$$ con $$$x = Z$$$ y $$$y = X \cdot Y$$$:

$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot {\color{red}\left(Z \cdot \left(Z + \left(X \cdot Y\right)\right)\right)}\right) = \left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot {\color{red}\left(Z\right)}\right)$$

Aplica el teorema de De Morgan $$$\overline{x \cdot y} = \overline{x} + \overline{y}$$$ con $$$x = Y$$$ y $$$y = Z$$$:

$$\left(X \cdot Y\right) + {\color{red}\left(\overline{Y \cdot Z}\right)} + \left(X \cdot \overline{Y} \cdot Z\right) = \left(X \cdot Y\right) + {\color{red}\left(\overline{Y} + \overline{Z}\right)} + \left(X \cdot \overline{Y} \cdot Z\right)$$

Aplica la propiedad conmutativa:

$${\color{red}\left(\left(X \cdot Y\right) + \overline{Y} + \overline{Z} + \left(X \cdot \overline{Y} \cdot Z\right)\right)} = {\color{red}\left(\left(X \cdot Y\right) + \overline{Y} + \left(X \cdot \overline{Y} \cdot Z\right) + \overline{Z}\right)}$$

Aplica la propiedad conmutativa:

$$\left(X \cdot Y\right) + \overline{Y} + {\color{red}\left(X \cdot \overline{Y} \cdot Z\right)} + \overline{Z} = \left(X \cdot Y\right) + \overline{Y} + {\color{red}\left(\overline{Y} \cdot X \cdot Z\right)} + \overline{Z}$$

Aplica la ley de absorción $$$x + \left(x \cdot y\right) = x$$$ con $$$x = \overline{Y}$$$ y $$$y = X \cdot Z$$$:

$$\left(X \cdot Y\right) + {\color{red}\left(\overline{Y} + \left(\overline{Y} \cdot X \cdot Z\right)\right)} + \overline{Z} = \left(X \cdot Y\right) + {\color{red}\left(\overline{Y}\right)} + \overline{Z}$$

Aplica la propiedad conmutativa:

$${\color{red}\left(\left(X \cdot Y\right) + \overline{Y} + \overline{Z}\right)} = {\color{red}\left(\overline{Y} + \left(X \cdot Y\right) + \overline{Z}\right)}$$

Aplica la propiedad conmutativa:

$$\overline{Y} + {\color{red}\left(X \cdot Y\right)} + \overline{Z} = \overline{Y} + {\color{red}\left(Y \cdot X\right)} + \overline{Z}$$

Aplica la ley de redundancia $$$x + \left(\overline{x} \cdot y\right) = x + y$$$ con $$$x = \overline{Y}$$$ y $$$y = X$$$:

$${\color{red}\left(\overline{Y} + \left(Y \cdot X\right)\right)} + \overline{Z} = {\color{red}\left(\overline{Y} + X\right)} + \overline{Z}$$

Respuesta

$$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right) = \overline{Y} + X + \overline{Z}$$$


Please try a new game Rotatly