Calculadora de vida media

Calcule la vida media y la cantidad de una sustancia paso a paso

Esta calculadora calculará la vida media, la cantidad inicial, la cantidad restante y el tiempo, con los pasos que se muestran.

There are units of mass of a substance with a half-life of units of time. In units of time, there will remain units of mass of the substance.

Enter any three values.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.


Your input: find $$$N(t)$$$ in $$$N(t)=N_0e^{-\lambda t}$$$ given $$$N_0=250$$$, $$$t_h=15$$$, $$$t=100$$$.

$$$N(t)$$$ is the amount after the time $$$t$$$, $$$N_0$$$ is the initial amount, $$$t_h$$$ is the half-life.

First, find the constant $$$\lambda$$$ (also known as decay constant or decay rate).

We know that after half-life there will be twice less the initial quantity: $$$N\left(t_h\right)=\frac{N_0}{2}=N_0e^{-\lambda t_h}$$$.

Simplifying gives $$$\frac{1}{2}=e^{-\lambda t_h}$$$ or $$$\lambda=-\frac{\ln\left(\frac{1}{2}\right)}{t_h}$$$.

Plugging this into the initial equation, we obtain that $$$N(t)=N_0e^{\frac{\ln\left(\frac{1}{2}\right)}{t_h}t}$$$ or $$$N(t)=N_0\left(\frac{1}{2}\right)^{\frac{t}{t_h}}$$$.

Finally, just plug in the given values and find the unknown one.

From $$$N(t)=250\left(\frac{1}{2}\right)^{\frac{100}{15}}$$$, we have that $$$N(t)=\frac{125 \sqrt[3]{2}}{64}$$$.

Answer: $$$N(t)=\frac{125 \sqrt[3]{2}}{64}\approx 2.46078330057592$$$.