## Calcular derivadas parciales paso a paso

Esta calculadora en línea calculará la derivada parcial de la función, con los pasos que se muestran. Puede especificar cualquier orden de integración.

Enter a function:

Enter the order of integration:

Hint: type x^2,y to calculate (partial^3 f)/(partial x^2 partial y), or enter x,y^2,x to find (partial^4 f)/(partial x partial y^2 partial x).

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

### Solution

Your input: find $\frac{\partial}{\partial x}\left(3 x + 4 y\right)$

The derivative of a sum/difference is the sum/difference of derivatives:

$${\color{red}{\frac{\partial}{\partial x}\left(3 x + 4 y\right)}}={\color{red}{\left(\frac{\partial}{\partial x}\left(3 x\right) + \frac{\partial}{\partial x}\left(4 y\right)\right)}}$$

The derivative of a constant is 0:

$${\color{red}{\frac{\partial}{\partial x}\left(4 y\right)}} + \frac{\partial}{\partial x}\left(3 x\right)={\color{red}{\left(0\right)}} + \frac{\partial}{\partial x}\left(3 x\right)$$

Apply the constant multiple rule $\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$ with $c=3$ and $f=x$:

$${\color{red}{\frac{\partial}{\partial x}\left(3 x\right)}}={\color{red}{\left(3 \frac{\partial}{\partial x}\left(x\right)\right)}}$$

Apply the power rule $\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$ with $n=1$, in other words $\frac{\partial}{\partial x} \left(x \right)=1$:

$$3 {\color{red}{\frac{\partial}{\partial x}\left(x\right)}}=3 {\color{red}{1}}$$

Thus, $\frac{\partial}{\partial x}\left(3 x + 4 y\right)=3$

Answer: $\frac{\partial}{\partial x}\left(3 x + 4 y\right)=3$