Divide $$$x^{3}$$$ entre $$$x^{2} - 9$$$
Calculadoras relacionadas: Calculadora de división sintética, Calculadora de división larga
Tu entrada
Calcula $$$\frac{x^{3}}{x^{2} - 9}$$$ mediante la división larga.
Solución
Escriba el problema en el formato especial (los términos ausentes se escriben con coeficiente cero):
$$$\begin{array}{r|r}\hline\\x^{2}-9&x^{3}+0 x^{2}+0 x+0\end{array}$$$
Paso 1
Divide el término principal del dividendo entre el término principal del divisor: $$$\frac{x^{3}}{x^{2}} = x$$$.
Escriba el resultado calculado en la parte superior de la tabla.
Multiplícalo por el divisor: $$$x \left(x^{2}-9\right) = x^{3}- 9 x$$$.
Resta el dividendo del resultado obtenido: $$$\left(x^{3}\right) - \left(x^{3}- 9 x\right) = 9 x$$$.
$$\begin{array}{r|rrrr:c}&{\color{Peru}x}&&&&\\\hline\\{\color{Magenta}x^{2}}-9&{\color{Peru}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{Peru}x^{3}}}{{\color{Magenta}x^{2}}} = {\color{Peru}x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&- 9 x&&{\color{Peru}x} \left(x^{2}-9\right) = x^{3}- 9 x\\\hline\\&&&9 x&+0&\end{array}$$Dado que el grado del resto es menor que el grado del divisor, hemos terminado.
La tabla resultante se muestra nuevamente:
$$\begin{array}{r|rrrr:c}&{\color{Peru}x}&&&&\text{Pistas}\\\hline\\{\color{Magenta}x^{2}}-9&{\color{Peru}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{Peru}x^{3}}}{{\color{Magenta}x^{2}}} = {\color{Peru}x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&- 9 x&&{\color{Peru}x} \left(x^{2}-9\right) = x^{3}- 9 x\\\hline\\&&&9 x&+0&\end{array}$$Por lo tanto, $$$\frac{x^{3}}{x^{2} - 9} = x + \frac{9 x}{x^{2} - 9}$$$.
Respuesta
$$$\frac{x^{3}}{x^{2} - 9} = x + \frac{9 x}{x^{2} - 9}$$$A