Divide $$$u^{3}$$$ entre $$$1 - u^{2}$$$

La calculadora dividirá $$$u^{3}$$$ entre $$$1 - u^{2}$$$ mediante la división larga, mostrando los pasos.

Calculadoras relacionadas: Calculadora de división sintética, Calculadora de división larga

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Calcula $$$\frac{u^{3}}{1 - u^{2}}$$$ mediante la división larga.

Solución

Escriba el problema en el formato especial (los términos ausentes se escriben con coeficiente cero):

$$$\begin{array}{r|r}\hline\\- u^{2}+1&u^{3}+0 u^{2}+0 u+0\end{array}$$$

Paso 1

Divide el término principal del dividendo entre el término principal del divisor: $$$\frac{u^{3}}{- u^{2}} = - u$$$.

Escriba el resultado calculado en la parte superior de la tabla.

Multiplícalo por el divisor: $$$- u \left(- u^{2}+1\right) = u^{3}- u$$$.

Resta el dividendo del resultado obtenido: $$$\left(u^{3}\right) - \left(u^{3}- u\right) = u$$$.

$$\begin{array}{r|rrrr:c}&{\color{Violet}- u}&&&&\\\hline\\{\color{Magenta}- u^{2}}+1&{\color{Violet}u^{3}}&+0 u^{2}&+0 u&+0&\frac{{\color{Violet}u^{3}}}{{\color{Magenta}- u^{2}}} = {\color{Violet}- u}\\&-\phantom{u^{3}}&&&&\\&u^{3}&+0 u^{2}&- u&&{\color{Violet}- u} \left(- u^{2}+1\right) = u^{3}- u\\\hline\\&&&u&+0&\end{array}$$

Dado que el grado del resto es menor que el grado del divisor, hemos terminado.

La tabla resultante se muestra nuevamente:

$$\begin{array}{r|rrrr:c}&{\color{Violet}- u}&&&&\text{Pistas}\\\hline\\{\color{Magenta}- u^{2}}+1&{\color{Violet}u^{3}}&+0 u^{2}&+0 u&+0&\frac{{\color{Violet}u^{3}}}{{\color{Magenta}- u^{2}}} = {\color{Violet}- u}\\&-\phantom{u^{3}}&&&&\\&u^{3}&+0 u^{2}&- u&&{\color{Violet}- u} \left(- u^{2}+1\right) = u^{3}- u\\\hline\\&&&u&+0&\end{array}$$

Por lo tanto, $$$\frac{u^{3}}{1 - u^{2}} = - u + \frac{u}{1 - u^{2}}$$$.

Respuesta

$$$\frac{u^{3}}{1 - u^{2}} = - u + \frac{u}{1 - u^{2}}$$$A


Please try a new game Rotatly