Calculadora de multiplicación de polinomios
Multiplica polinomios paso a paso
La calculadora multiplicará dos polinomios (cuadrático, binomial, trinomio, etc.), con pasos mostrados.
Solution
Your input: multiply $$$3 x^{8} - 5 x^{3} - x^{2} + 2 x + 1$$$ by $$$2 x^{2} - 5 x + 3$$$.
To multiply polynomials, multiply each term of the first polynomial by every term of the second polynomial. Then simplify the products and add them. Finally, simplify further if possible.
So, perform the first step:
$$$\left(\color{SaddleBrown}{3 x^{8}}\color{GoldenRod}{- 5 x^{3}}\color{BlueViolet}{- x^{2}}+\color{Chartreuse}{2 x}+\color{DeepPink}{1}\right) \cdot \left(\color{Brown}{2 x^{2}}\color{Blue}{- 5 x}+\color{Purple}{3}\right)=$$$
$$$=\left(\color{SaddleBrown}{3 x^{8}}\right)\cdot \left(\color{Brown}{2 x^{2}}\right)+\left(\color{SaddleBrown}{3 x^{8}}\right)\cdot \left(\color{Blue}{- 5 x}\right)+\left(\color{SaddleBrown}{3 x^{8}}\right)\cdot \left(\color{Purple}{3}\right)+$$$
$$$+\left(\color{GoldenRod}{- 5 x^{3}}\right)\cdot \left(\color{Brown}{2 x^{2}}\right)+\left(\color{GoldenRod}{- 5 x^{3}}\right)\cdot \left(\color{Blue}{- 5 x}\right)+\left(\color{GoldenRod}{- 5 x^{3}}\right)\cdot \left(\color{Purple}{3}\right)+$$$
$$$+\left(\color{BlueViolet}{- x^{2}}\right)\cdot \left(\color{Brown}{2 x^{2}}\right)+\left(\color{BlueViolet}{- x^{2}}\right)\cdot \left(\color{Blue}{- 5 x}\right)+\left(\color{BlueViolet}{- x^{2}}\right)\cdot \left(\color{Purple}{3}\right)+$$$
$$$+\left(\color{Chartreuse}{2 x}\right)\cdot \left(\color{Brown}{2 x^{2}}\right)+\left(\color{Chartreuse}{2 x}\right)\cdot \left(\color{Blue}{- 5 x}\right)+\left(\color{Chartreuse}{2 x}\right)\cdot \left(\color{Purple}{3}\right)+$$$
$$$+\left(\color{DeepPink}{1}\right)\cdot \left(\color{Brown}{2 x^{2}}\right)+\left(\color{DeepPink}{1}\right)\cdot \left(\color{Blue}{- 5 x}\right)+\left(\color{DeepPink}{1}\right)\cdot \left(\color{Purple}{3}\right)=$$$
Simplify the products:
$$$=6 x^{10}- 15 x^{9}+9 x^{8}+$$$
$$$- 10 x^{5}+25 x^{4}- 15 x^{3}+$$$
$$$- 2 x^{4}+5 x^{3}- 3 x^{2}+$$$
$$$+4 x^{3}- 10 x^{2}+6 x+$$$
$$$+2 x^{2}- 5 x+3=$$$
Simplify further:
$$$=6 x^{10} - 15 x^{9} + 9 x^{8} - 10 x^{5} + 23 x^{4} - 6 x^{3} - 11 x^{2} + x + 3$$$
Answer: $$$\left(3 x^{8} - 5 x^{3} - x^{2} + 2 x + 1\right)\cdot \left(2 x^{2} - 5 x + 3\right)=6 x^{10} - 15 x^{9} + 9 x^{8} - 10 x^{5} + 23 x^{4} - 6 x^{3} - 11 x^{2} + x + 3$$$.