Calculadora de líneas
Hallar la ecuación de una recta paso a paso
Esta calculadora encontrará la ecuación de una recta (en las formas pendiente-intersección, punto-pendiente y general) dados dos puntos o la pendiente y un punto, con los pasos mostrados.
Calculadoras relacionadas: Calculadora de pendientes, Calculadora de rectas paralelas y perpendiculares
Solution
Your input: find the equation of a line given two points $$$P=\left(-4, 7\right)$$$ and $$$Q=\left(1, 2\right)$$$.
The slope of a line passing through the two points `P=(x_1, y_1)` and `Q=(x_2, y_2)` is given by `m=(y_2-y_1)/(x_2-x_1)`.
We have that $$$x_1=-4$$$, $$$y_1=7$$$, $$$x_2=1$$$, $$$y_2=2$$$.
Plug the given values into the formula for slope: $$$m=\frac{\left(2\right)-\left(7\right)}{\left(1\right)-\left(-4\right)}=\frac{-5}{5}=-1$$$.
Now, the y-intercept is `b=y_1-m*x_1` (or `b=y_2-m*x_2`, the result is the same).
$$$b=7-\left(-1\right) \cdot \left(-4\right)=3$$$.
Finally, the equation of the line can be written in the form `y=mx+b`.
$$$y=-x+3$$$.
Answer:
The slope of the line is $$$m=-1$$$.
The equation of the line in the slope-intercept form is $$$y=-x+3$$$.
The equation of the line in the point-slope form is $$$y - 7 = - (x + 4)$$$.
The equation of the line in the point-slope form is $$$y - 2 = - (x - 1)$$$.
The general equation of the line is $$$x + y - 3 = 0$$$.