Jacobian Calculator

The calculator will find the Jacobian matrix of the set of functions and the Jacobian determinant (if possible), with steps shown.

Comma-separated.
Leave empty for autodetection or specify variables like x,y (comma-separated).

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Calculate the Jacobian of $\left\{x = r \cos{\left(\theta \right)}, y = r \sin{\left(\theta \right)}\right\}$.

Solution

The Jacobian matrix is defined as follows: $J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta}\\\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right].$

In our case, $J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial}{\partial r} \left(r \cos{\left(\theta \right)}\right) & \frac{\partial}{\partial \theta} \left(r \cos{\left(\theta \right)}\right)\\\frac{\partial}{\partial r} \left(r \sin{\left(\theta \right)}\right) & \frac{\partial}{\partial \theta} \left(r \sin{\left(\theta \right)}\right)\end{array}\right].$

Find the derivatives (for steps, see derivative calculator): $J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right].$

The Jacobian determinant is the determinant of the Jacobian matrix: $\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = r$ (for steps, see determinant calculator).

The Jacobian matrix is $\left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right]$A.
The Jacobian determinant is $r$A.