Integral of $$$\cot{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cot{\left(x \right)}\, dx$$$.
Solution
Rewrite the cotangent as $$$\cot\left(x\right)=\frac{\cos\left(x\right)}{\sin\left(x\right)}$$$:
$$\color{red}{\int{\cot{\left(x \right)} d x}} = \color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}$$
Let $$$u=\sin{\left(x \right)}$$$.
Then $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (steps can be seen here), and we have that $$$\cos{\left(x \right)} dx = du$$$.
The integral becomes
$$\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}} = \color{red}{\int{\frac{1}{u} d u}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(u \right)}$$$
$$\color{red}{\int{\frac{1}{u} d u}} = \color{red}{\ln{\left(u \right)}}$$
Recall that $$$u=\sin{\left(x \right)}$$$:
$$\ln{\left(\color{red}{u} \right)} = \ln{\left(\color{red}{\sin{\left(x \right)}} \right)}$$
Therefore,
$$\int{\cot{\left(x \right)} d x} = \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}$$
Add the constant of integration:
$$\int{\cot{\left(x \right)} d x} = \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}+C$$
Answer: $$$\int{\cot{\left(x \right)} d x}=\ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}+C$$$