# Find $\frac{d^{2}}{dx^{2}} \left(\sin{\left(x \right)}\right)$

The calculator will find $\frac{d^{2}}{dx^{2}} \left(\sin{\left(x \right)}\right)$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Find $\frac{d^{2}}{dx^{2}} \left(\sin{\left(x \right)}\right)$.

### Find the first derivative $\frac{d}{dx} \left(\sin{\left(x \right)}\right)$

The derivative of the sine is $\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = {\color{red}\left(\cos{\left(x \right)}\right)}$$

Thus, $\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$.

### Next, $\frac{d^{2}}{dx^{2}} \left(\sin{\left(x \right)}\right) = \frac{d}{dx} \left(\cos{\left(x \right)}\right)$

The derivative of the cosine is $\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$:

$${\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = {\color{red}\left(- \sin{\left(x \right)}\right)}$$

Thus, $\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$.

Therefore, $\frac{d^{2}}{dx^{2}} \left(\sin{\left(x \right)}\right) = - \sin{\left(x \right)}$.

$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x \right)}\right) = - \sin{\left(x \right)}$A