# Secant Calculator

The calculator will find the secant of the given value in radians or degrees.

The secant $$$y=\sec(x)$$$ is such a function that $$$y=\frac{1}{\cos(x)}$$$.

The domain of the secant is $$$x \ne \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$$$, the range is $$$(-\infty,-1]\cup[1,\infty)$$$.

It is an even function.

Related calculator: Inverse Secant Calculator

## Your Input

**Find $$$\sec{\left(\frac{\pi}{4} \right)}$$$.**

## Answer

**$$$\sec{\left(\frac{\pi}{4} \right)} = \sec{\left(45^0 \right)} = \sqrt{2}\approx 1.414213562373095$$$A**

**For graph, see the graphing calculator.**