# Inverse Hyperbolic Sine Calculator

The calculator will find the inverse hyperbolic sine of the given value.

The inverse hyperbolic sine $$$y=\sinh^{-1}(x)$$$ or $$$y=\operatorname{asinh}(x)$$$ or $$$y=\operatorname{arcsinh}(x)$$$ is such a function that $$$\sinh(y)=x$$$.

It can be expressed in terms of elementary functions: $$$y=\sinh^{-1}(x)=\ln\left(x+\sqrt{x^2+1}\right)$$$.

The domain of the inverse hyperbolic sine is $$$(-\infty,\infty)$$$, the range is $$$(-\infty,\infty)$$$.

It is an odd function.

Related calculator: Hyperbolic Sine Calculator

## Your Input

**Find $$$\operatorname{asinh}{\left(- \frac{1}{4} \right)}$$$.**

## Answer

**$$$\operatorname{asinh}{\left(- \frac{1}{4} \right)} = - \operatorname{asinh}{\left(\frac{1}{4} \right)}\approx -0.247466461547263$$$A**

**For graph, see the graphing calculator.**