# Inverse Hyperbolic Cosine Calculator

The calculator will find the inverse hyperbolic cosine of the given value.

The inverse hyperbolic cosine $$$y=\cosh^{-1}(x)$$$ or $$$y=\operatorname{acosh}(x)$$$ or $$$y=\operatorname{arccosh}(x)$$$ is such a function that $$$\cosh(y)=x$$$.

It can be expressed in terms of elementary functions: $$$y=\cosh^{-1}(x)=\ln\left(x+\sqrt{x^2-1}\right)$$$.

The domain of the inverse hyperbolic cosine is $$$[1,\infty)$$$, the range is $$$[0,\infty)$$$.

This function is neither even nor odd.

Related calculator: Hyperbolic Cosine Calculator

## Your Input

**Find $$$\operatorname{acosh}{\left(3 \right)}$$$.**

## Answer

**$$$\operatorname{acosh}{\left(3 \right)}\approx 1.762747174039086$$$A**

**For graph, see the graphing calculator.**