Ανάλυση σε πρώτους παράγοντες του $$$3675$$$
Η είσοδός σας
Βρείτε την ανάλυση του $$$3675$$$ σε πρώτους παράγοντες.
Λύση
Ξεκινήστε με τον αριθμό $$$2$$$.
Προσδιορίστε αν το $$$3675$$$ είναι divisible με το $$$2$$$.
Αφού δεν διαιρείται, προχωρήστε στον επόμενο πρώτο αριθμό.
Ο επόμενος πρώτος αριθμός είναι $$$3$$$.
Προσδιορίστε αν το $$$3675$$$ είναι διαιρετό με το $$$3$$$.
Είναι διαιρετό, άρα διαιρέστε $$$3675$$$ με $$${\color{green}3}$$$: $$$\frac{3675}{3} = {\color{red}1225}$$$.
Προσδιορίστε αν το $$$1225$$$ είναι διαιρετό με το $$$3$$$.
Αφού δεν διαιρείται, προχωρήστε στον επόμενο πρώτο αριθμό.
Ο επόμενος πρώτος αριθμός είναι $$$5$$$.
Προσδιορίστε αν το $$$1225$$$ είναι διαιρετό με το $$$5$$$.
Είναι διαιρετό, άρα διαιρέστε $$$1225$$$ με $$${\color{green}5}$$$: $$$\frac{1225}{5} = {\color{red}245}$$$.
Προσδιορίστε αν το $$$245$$$ είναι διαιρετό με το $$$5$$$.
Είναι διαιρετό, άρα διαιρέστε $$$245$$$ με $$${\color{green}5}$$$: $$$\frac{245}{5} = {\color{red}49}$$$.
Προσδιορίστε αν το $$$49$$$ είναι διαιρετό με το $$$5$$$.
Αφού δεν διαιρείται, προχωρήστε στον επόμενο πρώτο αριθμό.
Ο επόμενος πρώτος αριθμός είναι $$$7$$$.
Προσδιορίστε αν το $$$49$$$ είναι διαιρετό με το $$$7$$$.
Είναι διαιρετό, άρα διαιρέστε $$$49$$$ με $$${\color{green}7}$$$: $$$\frac{49}{7} = {\color{red}7}$$$.
Ο πρώτος αριθμός $$${\color{green}7}$$$ δεν έχει άλλους διαιρέτες εκτός από $$$1$$$ και $$${\color{green}7}$$$: $$$\frac{7}{7} = {\color{red}1}$$$.
Εφόσον έχουμε βρει $$$1$$$, ολοκληρώσαμε.
Τώρα, απλώς μετρήστε τον αριθμό των εμφανίσεων των διαιρετών (πράσινοι αριθμοί) και γράψτε την ανάλυση σε πρώτους παράγοντες: $$$3675 = 3 \cdot 5^{2} \cdot 7^{2}$$$.
Απάντηση
Η παραγοντοποίηση σε πρώτους παράγοντες είναι $$$3675 = 3 \cdot 5^{2} \cdot 7^{2}$$$A.