Ανάλυση σε πρώτους παράγοντες του $$$2313$$$
Η είσοδός σας
Βρείτε την ανάλυση του $$$2313$$$ σε πρώτους παράγοντες.
Λύση
Ξεκινήστε με τον αριθμό $$$2$$$.
Προσδιορίστε αν το $$$2313$$$ είναι divisible με το $$$2$$$.
Αφού δεν διαιρείται, προχωρήστε στον επόμενο πρώτο αριθμό.
Ο επόμενος πρώτος αριθμός είναι $$$3$$$.
Προσδιορίστε αν το $$$2313$$$ είναι διαιρετό με το $$$3$$$.
Είναι διαιρετό, άρα διαιρέστε $$$2313$$$ με $$${\color{green}3}$$$: $$$\frac{2313}{3} = {\color{red}771}$$$.
Προσδιορίστε αν το $$$771$$$ είναι διαιρετό με το $$$3$$$.
Είναι διαιρετό, άρα διαιρέστε $$$771$$$ με $$${\color{green}3}$$$: $$$\frac{771}{3} = {\color{red}257}$$$.
Ο πρώτος αριθμός $$${\color{green}257}$$$ δεν έχει άλλους διαιρέτες εκτός από $$$1$$$ και $$${\color{green}257}$$$: $$$\frac{257}{257} = {\color{red}1}$$$.
Εφόσον έχουμε βρει $$$1$$$, ολοκληρώσαμε.
Τώρα, απλώς μετρήστε τον αριθμό των εμφανίσεων των διαιρετών (πράσινοι αριθμοί) και γράψτε την ανάλυση σε πρώτους παράγοντες: $$$2313 = 3^{2} \cdot 257$$$.
Απάντηση
Η παραγοντοποίηση σε πρώτους παράγοντες είναι $$$2313 = 3^{2} \cdot 257$$$A.