Υπολογιστής μετατροπής κλάσματος σε δεκαδικό

Μετατρέψτε κλάσματα σε δεκαδικούς αριθμούς βήμα προς βήμα

Η αριθμομηχανή θα μετατρέψει το δοθέν κλάσμα (γνήσιο ή καταχρηστικό) ή μεικτό αριθμό σε δεκαδικό αριθμό (ενδεχομένως περιοδικό), με εμφάνιση των βημάτων.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{1200}{14}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{8}&\phantom{5}&\phantom{.}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\14&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&2&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$14$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-14 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}\color{Red}{0}&\phantom{0}&\phantom{8}&\phantom{5}&\phantom{.}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}\color{Red}{1}& 2 \downarrow&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$14$$$'s are in $$$12$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$12-14 \cdot 0 = 12 - 0= 12$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&\color{GoldenRod}{0}&\phantom{8}&\phantom{5}&\phantom{.}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2& 0 \downarrow&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{GoldenRod}{1}&\color{GoldenRod}{2}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$14$$$'s are in $$$120$$$?

The answer is $$$8$$$.

Write down $$$8$$$ in the upper part of the table.

Now, $$$120-14 \cdot 8 = 120 - 112= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&\color{DeepPink}{8}&\phantom{5}&\phantom{.}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0& 0 \downarrow&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DeepPink}{1}&\color{DeepPink}{2}&\color{DeepPink}{0}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$14$$$'s are in $$$80$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$80-14 \cdot 5 = 80 - 70= 10$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&\color{Peru}{5}&\phantom{.}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.& 0 \downarrow&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&\color{Peru}{8}&\color{Peru}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$14$$$'s are in $$$100$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$100-14 \cdot 7 = 100 - 98= 2$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&\color{Chocolate}{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0& 0 \downarrow&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&\color{Chocolate}{1}&\color{Chocolate}{0}&\phantom{.}&\color{Chocolate}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$14$$$'s are in $$$20$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$20-14 \cdot 1 = 20 - 14= 6$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&\color{Blue}{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0& 0 \downarrow&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&\color{Blue}{2}&\color{Blue}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 7

How many $$$14$$$'s are in $$$60$$$?

The answer is $$$4$$$.

Write down $$$4$$$ in the upper part of the table.

Now, $$$60-14 \cdot 4 = 60 - 56= 4$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&\color{BlueViolet}{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0& 0 \downarrow&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&\color{BlueViolet}{6}&\color{BlueViolet}{0}\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 8

How many $$$14$$$'s are in $$$40$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$40-14 \cdot 2 = 40 - 28= 12$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&\color{Fuchsia}{2}&\phantom{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0& 0 \downarrow&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&\color{Fuchsia}{4}&\color{Fuchsia}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&1&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 9

How many $$$14$$$'s are in $$$120$$$?

The answer is $$$8$$$.

Write down $$$8$$$ in the upper part of the table.

Now, $$$120-14 \cdot 8 = 120 - 112= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&2&\color{Crimson}{8}&\phantom{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0&0& 0 \downarrow&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&\color{Crimson}{1}&\color{Crimson}{2}&\color{Crimson}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 10

How many $$$14$$$'s are in $$$80$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$80-14 \cdot 5 = 80 - 70= 10$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&2&8&\color{Green}{5}&\phantom{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0&0&0& 0 \downarrow&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&\color{Green}{8}&\color{Green}{0}\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&1&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 11

How many $$$14$$$'s are in $$$100$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$100-14 \cdot 7 = 100 - 98= 2$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&2&8&5&\color{DarkMagenta}{7}&\phantom{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0&0&0&0& 0 \downarrow&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&8&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&\color{DarkMagenta}{1}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 12

How many $$$14$$$'s are in $$$20$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$20-14 \cdot 1 = 20 - 14= 6$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&2&8&5&7&\color{DarkCyan}{1}&\phantom{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0&0&0&0&0& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&8&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&1&0&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&\color{DarkCyan}{2}&\color{DarkCyan}{0}\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 13

How many $$$14$$$'s are in $$$60$$$?

The answer is $$$4$$$.

Write down $$$4$$$ in the upper part of the table.

Now, $$$60-14 \cdot 4 = 60 - 56= 4$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&2&8&5&7&1&\color{Chartreuse}{4}&\phantom{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0&0&0&0&0&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&8&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&1&0&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&2&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&\color{Chartreuse}{6}&\color{Chartreuse}{0}\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 14

How many $$$14$$$'s are in $$$40$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$40-14 \cdot 2 = 40 - 28= 12$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&2&8&5&7&1&4&\color{OrangeRed}{2}&\phantom{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0&0&0&0&0&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&8&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&1&0&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&2&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&6&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&\color{OrangeRed}{4}&\color{OrangeRed}{0}\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&&&&&&1&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 15

How many $$$14$$$'s are in $$$120$$$?

The answer is $$$8$$$.

Write down $$$8$$$ in the upper part of the table.

Now, $$$120-14 \cdot 8 = 120 - 112= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&2&8&5&7&1&4&2&\color{SaddleBrown}{8}&\phantom{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0&0&0&0&0&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&8&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&1&0&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&2&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&6&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&4&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&&&&&&\color{SaddleBrown}{1}&\color{SaddleBrown}{2}&\color{SaddleBrown}{0}\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&&&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 16

How many $$$14$$$'s are in $$$80$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$80-14 \cdot 5 = 80 - 70= 10$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&2&8&5&7&1&4&2&8&\color{Violet}{5}&\phantom{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&8&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&1&0&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&2&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&6&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&4&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&&&&&&1&2&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&&&&&&\color{Violet}{8}&\color{Violet}{0}\\&&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&&&&&&1&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 17

How many $$$14$$$'s are in $$$100$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$100-14 \cdot 7 = 100 - 98= 2$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&8&5&.&7&1&4&2&8&5&7&1&4&2&8&5&\color{DarkBlue}{7}\end{array}&\\\color{Magenta}{14}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}1&2&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&1&2&\phantom{.}\\\hline\phantom{lll}&&8&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&7&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&5&6\\\hline\phantom{lll}&&&&&&&4&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&8&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&1&0&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&2&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&1&4\\\hline\phantom{lll}&&&&&&&&&&&&6&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&4&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&2&8\\\hline\phantom{lll}&&&&&&&&&&&&&1&2&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&1&1&2\\\hline\phantom{lll}&&&&&&&&&&&&&&&8&0\\&&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&&7&0\\\hline\phantom{lll}&&&&&&&&&&&&&&&\color{DarkBlue}{1}&\color{DarkBlue}{0}&\color{DarkBlue}{0}\\&&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&&&9&8\\\hline\phantom{lll}&&&&&&&&&&&&&&&&&2\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1200}{14}=85.7 \overline{142857}$$$

Answer: $$$\frac{1200}{14}=85.7\overline{142857}$$$


Please try a new game Rotatly