$$$\left[\begin{array}{ccc}0 & 1 & 0\\\frac{\sqrt{2}}{2} & \sqrt{2} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{3}}{3}\\- \frac{\sqrt{3}}{3}\\\frac{\sqrt{3}}{3}\end{array}\right]$$$

The calculator will multiply the $$$3$$$x$$$3$$$ matrix $$$\left[\begin{array}{ccc}0 & 1 & 0\\\frac{\sqrt{2}}{2} & \sqrt{2} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\end{array}\right]$$$ by the $$$3$$$x$$$1$$$ matrix $$$\left[\begin{array}{c}\frac{\sqrt{3}}{3}\\- \frac{\sqrt{3}}{3}\\\frac{\sqrt{3}}{3}\end{array}\right]$$$, with steps shown.

Related calculator: Matrix Calculator

$$$\times$$$
$$$\times$$$

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\left[\begin{array}{ccc}0 & 1 & 0\\\frac{\sqrt{2}}{2} & \sqrt{2} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{3}}{3}\\- \frac{\sqrt{3}}{3}\\\frac{\sqrt{3}}{3}\end{array}\right].$$$

Solution

$$$\left[\begin{array}{ccc}{\color{GoldenRod}0} & {\color{Green}1} & {\color{Brown}0}\\{\color{BlueViolet}\frac{\sqrt{2}}{2}} & {\color{Chocolate}\sqrt{2}} & {\color{Purple}\frac{\sqrt{2}}{2}}\\{\color{Blue}\frac{\sqrt{2}}{2}} & {\color{Peru}0} & {\color{DarkCyan}\frac{\sqrt{2}}{2}}\end{array}\right]\cdot \left[\begin{array}{c}{\color{DarkCyan}\frac{\sqrt{3}}{3}}\\{\color{Crimson}- \frac{\sqrt{3}}{3}}\\{\color{DarkMagenta}\frac{\sqrt{3}}{3}}\end{array}\right] = \left[\begin{array}{c}{\color{GoldenRod}\left(0\right)}\cdot {\color{DarkCyan}\left(\frac{\sqrt{3}}{3}\right)} + {\color{Green}\left(1\right)}\cdot {\color{Crimson}\left(- \frac{\sqrt{3}}{3}\right)} + {\color{Brown}\left(0\right)}\cdot {\color{DarkMagenta}\left(\frac{\sqrt{3}}{3}\right)}\\{\color{BlueViolet}\left(\frac{\sqrt{2}}{2}\right)}\cdot {\color{DarkCyan}\left(\frac{\sqrt{3}}{3}\right)} + {\color{Chocolate}\left(\sqrt{2}\right)}\cdot {\color{Crimson}\left(- \frac{\sqrt{3}}{3}\right)} + {\color{Purple}\left(\frac{\sqrt{2}}{2}\right)}\cdot {\color{DarkMagenta}\left(\frac{\sqrt{3}}{3}\right)}\\{\color{Blue}\left(\frac{\sqrt{2}}{2}\right)}\cdot {\color{DarkCyan}\left(\frac{\sqrt{3}}{3}\right)} + {\color{Peru}\left(0\right)}\cdot {\color{Crimson}\left(- \frac{\sqrt{3}}{3}\right)} + {\color{DarkCyan}\left(\frac{\sqrt{2}}{2}\right)}\cdot {\color{DarkMagenta}\left(\frac{\sqrt{3}}{3}\right)}\end{array}\right] = \left[\begin{array}{c}- \frac{\sqrt{3}}{3}\\0\\\frac{\sqrt{6}}{3}\end{array}\right]$$$

Answer

$$$\left[\begin{array}{ccc}0 & 1 & 0\\\frac{\sqrt{2}}{2} & \sqrt{2} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{3}}{3}\\- \frac{\sqrt{3}}{3}\\\frac{\sqrt{3}}{3}\end{array}\right] = \left[\begin{array}{c}- \frac{\sqrt{3}}{3}\\0\\\frac{\sqrt{6}}{3}\end{array}\right]\approx \left[\begin{array}{c}-0.577350269189626\\0\\0.816496580927726\end{array}\right]$$$A