Matrix Addition Calculator

Add matrices step by step

The calculator will find the sum of two matrices (if possible), with steps shown. It adds matrices of any size up to 10x10 (2x2, 3x3, 4x4, etc.).

$$$\times$$$
A
$$$\times$$$
A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate $$$\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\-1 & -2 & 1\end{array}\right] + \left[\begin{array}{ccc}2 & 3 & 0\\8 & 9 & 5\\1 & 1 & 7\end{array}\right].$$$

Solution

$$$\left[\begin{array}{ccc}{\color{Chartreuse}4} & {\color{BlueViolet}5} & {\color{OrangeRed}7}\\{\color{Chocolate}2} & {\color{Violet}1} & {\color{DarkMagenta}0}\\{\color{SaddleBrown}-1} & {\color{Brown}-2} & {\color{GoldenRod}1}\end{array}\right] + \left[\begin{array}{ccc}{\color{Chartreuse}2} & {\color{BlueViolet}3} & {\color{OrangeRed}0}\\{\color{Chocolate}8} & {\color{Violet}9} & {\color{DarkMagenta}5}\\{\color{SaddleBrown}1} & {\color{Brown}1} & {\color{GoldenRod}7}\end{array}\right] = \left[\begin{array}{ccc}{\color{Chartreuse}\left(4\right)} + {\color{Chartreuse}\left(2\right)} & {\color{BlueViolet}\left(5\right)} + {\color{BlueViolet}\left(3\right)} & {\color{OrangeRed}\left(7\right)} + {\color{OrangeRed}\left(0\right)}\\{\color{Chocolate}\left(2\right)} + {\color{Chocolate}\left(8\right)} & {\color{Violet}\left(1\right)} + {\color{Violet}\left(9\right)} & {\color{DarkMagenta}\left(0\right)} + {\color{DarkMagenta}\left(5\right)}\\{\color{SaddleBrown}\left(-1\right)} + {\color{SaddleBrown}\left(1\right)} & {\color{Brown}\left(-2\right)} + {\color{Brown}\left(1\right)} & {\color{GoldenRod}\left(1\right)} + {\color{GoldenRod}\left(7\right)}\end{array}\right] = \left[\begin{array}{ccc}6 & 8 & 7\\10 & 10 & 5\\0 & -1 & 8\end{array}\right]$$$

Answer

$$$\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\-1 & -2 & 1\end{array}\right] + \left[\begin{array}{ccc}2 & 3 & 0\\8 & 9 & 5\\1 & 1 & 7\end{array}\right] = \left[\begin{array}{ccc}6 & 8 & 7\\10 & 10 & 5\\0 & -1 & 8\end{array}\right]$$$A


Please try a new game Rotatly