Harmonic mean of $$$1$$$, $$$13$$$
Related calculators: Average Calculator, Geometric Mean Calculator
Your Input
Find the harmonic mean of $$$1$$$, $$$13$$$.
Solution
The harmonic mean of data is given by the formula $$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}$$$, where $$$n$$$ is the number of values and $$$x_i, i=\overline{1..n}$$$ are the values themselves.
Since we have $$$2$$$ points, $$$n = 2$$$.
The sum of the reciprocals of the values is $$$\frac{1}{1} + \frac{1}{13} = \frac{14}{13}$$$.
Therefore, the harmonic mean is $$$H = \frac{2}{\frac{14}{13}} = \frac{13}{7}$$$.
Answer
The harmonic mean is $$$\frac{13}{7}\approx 1.857142857142857$$$A.