Find $$$P{\left(X = 8 \right)}$$$ for binomial distribution with $$$n = 12$$$ and $$$p = 0.1$$$

The calculator will find the probability that $$$X = 8$$$ for the binomial distribution with $$$n = 12$$$ and $$$p = 0.1$$$.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate the various values for the binomial distribution with $$$n = 12$$$, $$$p = 0.1 = \frac{1}{10}$$$, and $$$x = 8$$$.

Answer

Mean: $$$\mu = n p = \left(12\right)\cdot \left(\frac{1}{10}\right) = \frac{6}{5} = 1.2$$$A.

Variance: $$$\sigma^{2} = n p \left(1 - p\right) = \left(12\right)\cdot \left(\frac{1}{10}\right)\cdot \left(1 - \frac{1}{10}\right) = \frac{27}{25} = 1.08$$$A.

Standard deviation: $$$\sigma = \sqrt{n p \left(1 - p\right)} = \sqrt{\left(12\right)\cdot \left(\frac{1}{10}\right)\cdot \left(1 - \frac{1}{10}\right)} = \frac{3 \sqrt{3}}{5}\approx 1.039230484541326.$$$A

$$$P{\left(X = 8 \right)} = 0.000003247695$$$A

$$$P{\left(X \lt 8 \right)} = 0.99999658647$$$A

$$$P{\left(X \leq 8 \right)} = 0.999999834165$$$A

$$$P{\left(X \gt 8 \right)} = 1.65835 \cdot 10^{-7}$$$A

$$$P{\left(X \geq 8 \right)} = 0.00000341353$$$A


Please try a new game Rotatly