# Binomial Distribution Calculator

The calculator will find the binomial and cumulative probabilities, as well as the mean, variance and standard deviation of the binomial distribution.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Calculate the various values for the binomial distribution with $$n = 20$$$, $$p = 0.3 = \frac{3}{10}$$$, and $$x = 5$$$. ## Answer Mean: $$\mu = n p = \left(20\right)\cdot \left(\frac{3}{10}\right) = 6$$$A.
Variance: $$\sigma^{2} = n p \left(1 - p\right) = \left(20\right)\cdot \left(\frac{3}{10}\right)\cdot \left(1 - \frac{3}{10}\right) = \frac{21}{5} = 4.2$$$A. Standard deviation: $$\sigma = \sqrt{n p \left(1 - p\right)} = \sqrt{\left(20\right)\cdot \left(\frac{3}{10}\right)\cdot \left(1 - \frac{3}{10}\right)} = \frac{\sqrt{105}}{5}\approx 2.04939015319192.$$$A
$$P{\left(X = 5 \right)}\approx 0.17886305056988$$$A $$P{\left(X < 5 \right)}\approx 0.237507778877602$$$A
$$P{\left(X \leq 5 \right)}\approx 0.416370829447481$$$A $$P{\left(X > 5 \right)}\approx 0.583629170552519$$$A
$$P{\left(X \geq 5 \right)}\approx 0.762492221122398$$\$A