Prime factorization of $$$1945$$$
Your Input
Find the prime factorization of $$$1945$$$.
Solution
Start with the number $$$2$$$.
Determine whether $$$1945$$$ is divisible by $$$2$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$3$$$.
Determine whether $$$1945$$$ is divisible by $$$3$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$5$$$.
Determine whether $$$1945$$$ is divisible by $$$5$$$.
It is divisible, thus, divide $$$1945$$$ by $$${\color{green}5}$$$: $$$\frac{1945}{5} = {\color{red}389}$$$.
The prime number $$${\color{green}389}$$$ has no other factors then $$$1$$$ and $$${\color{green}389}$$$: $$$\frac{389}{389} = {\color{red}1}$$$.
Since we have obtained $$$1$$$, we are done.
Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$1945 = 5 \cdot 389$$$.
Answer
The prime factorization is $$$1945 = 5 \cdot 389$$$A.