Prime factorization of $$$1910$$$
Your Input
Find the prime factorization of $$$1910$$$.
Solution
Start with the number $$$2$$$.
Determine whether $$$1910$$$ is divisible by $$$2$$$.
It is divisible, thus, divide $$$1910$$$ by $$${\color{green}2}$$$: $$$\frac{1910}{2} = {\color{red}955}$$$.
Determine whether $$$955$$$ is divisible by $$$2$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$3$$$.
Determine whether $$$955$$$ is divisible by $$$3$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$5$$$.
Determine whether $$$955$$$ is divisible by $$$5$$$.
It is divisible, thus, divide $$$955$$$ by $$${\color{green}5}$$$: $$$\frac{955}{5} = {\color{red}191}$$$.
The prime number $$${\color{green}191}$$$ has no other factors then $$$1$$$ and $$${\color{green}191}$$$: $$$\frac{191}{191} = {\color{red}1}$$$.
Since we have obtained $$$1$$$, we are done.
Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$1910 = 2 \cdot 5 \cdot 191$$$.
Answer
The prime factorization is $$$1910 = 2 \cdot 5 \cdot 191$$$A.