Prime factorization of $$$1790$$$
Your Input
Find the prime factorization of $$$1790$$$.
Solution
Start with the number $$$2$$$.
Determine whether $$$1790$$$ is divisible by $$$2$$$.
It is divisible, thus, divide $$$1790$$$ by $$${\color{green}2}$$$: $$$\frac{1790}{2} = {\color{red}895}$$$.
Determine whether $$$895$$$ is divisible by $$$2$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$3$$$.
Determine whether $$$895$$$ is divisible by $$$3$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$5$$$.
Determine whether $$$895$$$ is divisible by $$$5$$$.
It is divisible, thus, divide $$$895$$$ by $$${\color{green}5}$$$: $$$\frac{895}{5} = {\color{red}179}$$$.
The prime number $$${\color{green}179}$$$ has no other factors then $$$1$$$ and $$${\color{green}179}$$$: $$$\frac{179}{179} = {\color{red}1}$$$.
Since we have obtained $$$1$$$, we are done.
Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$1790 = 2 \cdot 5 \cdot 179$$$.
Answer
The prime factorization is $$$1790 = 2 \cdot 5 \cdot 179$$$A.