Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{9000}{150}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\150&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}9&0&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$150$$$'s are in $$$9$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$9-0 \cdot 150 = 9 - 0= 9$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Crimson}{0}&\phantom{0}&\phantom{6}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Crimson}{9}& 0 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$150$$$'s are in $$$90$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$90-0 \cdot 150 = 90 - 0= 90$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{DarkBlue}{0}&\phantom{6}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&0& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkBlue}{9}&\color{DarkBlue}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$150$$$'s are in $$$900$$$? The answer is $$$6$$$.
Write down the calculated result in the upper part of the table.
Now, $$$900-6 \cdot 150 = 900 - 900= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Red}{6}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&0&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Red}{9}&\color{Red}{0}&\color{Red}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$150$$$'s are in $$$0$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$0-0 \cdot 150 = 0 - 0= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&6&\color{Brown}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&0&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{0}&\color{Brown}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$150$$$'s are in $$$0$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$0-0 \cdot 150 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&6&0&.&\color{Chocolate}{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&0&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Chocolate}{0}&\phantom{.}&\color{Chocolate}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{9000}{150}=60.0 \overline{}$$$
Answer: $$$\frac{9000}{150}=60.0\overline{}$$$