Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{1500}{24}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\24&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&5&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$24$$$'s are in $$$1$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$1-0 \cdot 24 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{DarkCyan}{0}&\phantom{0}&\phantom{6}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{DarkCyan}{1}& 5 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&5&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$24$$$'s are in $$$15$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$15-0 \cdot 24 = 15 - 0= 15$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Peru}{0}&\phantom{6}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&5& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Peru}{1}&\color{Peru}{5}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$24$$$'s are in $$$150$$$? The answer is $$$6$$$.
Write down the calculated result in the upper part of the table.
Now, $$$150-6 \cdot 24 = 150 - 144= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Red}{6}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&5&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Red}{1}&\color{Red}{5}&\color{Red}{0}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&4&4&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$24$$$'s are in $$$60$$$? The answer is $$$2$$$.
Write down the calculated result in the upper part of the table.
Now, $$$60-2 \cdot 24 = 60 - 48= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&6&\color{Chartreuse}{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&5&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&4&4&\phantom{.}\\\hline\phantom{lll}&&\color{Chartreuse}{6}&\color{Chartreuse}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&4&8&\phantom{.}\\\hline\phantom{lll}&&1&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$24$$$'s are in $$$120$$$? The answer is $$$5$$$.
Write down the calculated result in the upper part of the table.
Now, $$$120-5 \cdot 24 = 120 - 120= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&6&2&.&\color{Chocolate}{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&5&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&4&4&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&4&8&\phantom{.}\\\hline\phantom{lll}&&\color{Chocolate}{1}&\color{Chocolate}{2}&\phantom{.}&\color{Chocolate}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&1&2&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1500}{24}=62.5 \overline{}$$$
Answer: $$$\frac{1500}{24}=62.5\overline{}$$$