Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{1300}{25}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{5}&\phantom{2}&\phantom{.}&\phantom{0}\end{array}&\\25&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&3&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$25$$$'s are in $$$1$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$1-0 \cdot 25 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{DarkCyan}{0}&\phantom{0}&\phantom{5}&\phantom{2}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{DarkCyan}{1}& 3 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$25$$$'s are in $$$13$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$13-0 \cdot 25 = 13 - 0= 13$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Peru}{0}&\phantom{5}&\phantom{2}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Peru}{1}&\color{Peru}{3}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$25$$$'s are in $$$130$$$? The answer is $$$5$$$.
Write down the calculated result in the upper part of the table.
Now, $$$130-5 \cdot 25 = 130 - 125= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Red}{5}&\phantom{2}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Red}{1}&\color{Red}{3}&\color{Red}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$25$$$'s are in $$$50$$$? The answer is $$$2$$$.
Write down the calculated result in the upper part of the table.
Now, $$$50-2 \cdot 25 = 50 - 50= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&5&\color{Chartreuse}{2}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&5&\phantom{.}\\\hline\phantom{lll}&&\color{Chartreuse}{5}&\color{Chartreuse}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&5&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$25$$$'s are in $$$0$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$0-0 \cdot 25 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&5&2&.&\color{Chocolate}{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&3&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&5&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Chocolate}{0}&\phantom{.}&\color{Chocolate}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{1300}{25}=52.0$$$
Answer: $$$\frac{1300}{25}=52.0$$$