Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{1200}{18}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\18&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&2&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$18$$$'s are in $$$1$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$1-0 \cdot 18 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Crimson}{0}&\phantom{0}&\phantom{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Crimson}{1}& 2 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$18$$$'s are in $$$12$$$? The answer is $$$0$$$.
Write down the calculated result in the upper part of the table.
Now, $$$12-0 \cdot 18 = 12 - 0= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{DarkMagenta}{0}&\phantom{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&2& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkMagenta}{1}&\color{DarkMagenta}{2}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$18$$$'s are in $$$120$$$? The answer is $$$6$$$.
Write down the calculated result in the upper part of the table.
Now, $$$120-6 \cdot 18 = 120 - 108= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{Green}{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&2&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{2}&\color{Green}{0}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$18$$$'s are in $$$120$$$? The answer is $$$6$$$.
Write down the calculated result in the upper part of the table.
Now, $$$120-6 \cdot 18 = 120 - 108= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&\color{DarkCyan}{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&2&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&\color{DarkCyan}{1}&\color{DarkCyan}{2}&\color{DarkCyan}{0}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&0&8&\phantom{.}\\\hline\phantom{lll}&&1&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$18$$$'s are in $$$120$$$? The answer is $$$6$$$.
Write down the calculated result in the upper part of the table.
Now, $$$120-6 \cdot 18 = 120 - 108= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&6&.&\color{Brown}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&2&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&0&8&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{1}&\color{Brown}{2}&\phantom{.}&\color{Brown}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&0&\phantom{.}&8\\\hline\phantom{lll}&&&1&\phantom{.}&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$18$$$'s are in $$$120$$$? The answer is $$$6$$$.
Write down the calculated result in the upper part of the table.
Now, $$$120-6 \cdot 18 = 120 - 108= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&6&.&6&\color{Fuchsia}{6}&\phantom{6}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&2&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&0&8&\phantom{.}\\\hline\phantom{lll}&&1&2&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&0&\phantom{.}&8\\\hline\phantom{lll}&&&\color{Fuchsia}{1}&\phantom{.}&\color{Fuchsia}{2}&\color{Fuchsia}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&0&8\\\hline\phantom{lll}&&&&&1&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$18$$$'s are in $$$120$$$? The answer is $$$6$$$.
Write down the calculated result in the upper part of the table.
Now, $$$120-6 \cdot 18 = 120 - 108= 12$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&6&.&6&6&\color{DarkBlue}{6}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&2&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&1&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&0&8&\phantom{.}\\\hline\phantom{lll}&&1&2&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&0&\phantom{.}&8\\\hline\phantom{lll}&&&1&\phantom{.}&2&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&0&8\\\hline\phantom{lll}&&&&&\color{DarkBlue}{1}&\color{DarkBlue}{2}&\color{DarkBlue}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&0&8\\\hline\phantom{lll}&&&&&&1&2\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1200}{18}=66.6 \overline{6}$$$
Answer: $$$\frac{1200}{18}=66.6\overline{6}$$$