Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{600}{9}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\9&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}6&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$9$$$'s are in $$$6$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$6-9 \cdot 0 = 6 - 0= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Brown}{0}&\phantom{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Brown}{6}& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$9$$$'s are in $$$60$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$60-9 \cdot 6 = 60 - 54= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{DarkCyan}{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}6&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkCyan}{6}&\color{DarkCyan}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}5&4&\phantom{.}\\\hline\phantom{lll}&6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$9$$$'s are in $$$60$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$60-9 \cdot 6 = 60 - 54= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&6&\color{SaddleBrown}{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}6&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}5&4&\phantom{.}\\\hline\phantom{lll}&\color{SaddleBrown}{6}&\color{SaddleBrown}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&5&4&\phantom{.}\\\hline\phantom{lll}&&6&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$9$$$'s are in $$$60$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$60-9 \cdot 6 = 60 - 54= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&6&6&.&\color{DarkMagenta}{6}&\phantom{6}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}6&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}5&4&\phantom{.}\\\hline\phantom{lll}&6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&5&4&\phantom{.}\\\hline\phantom{lll}&&\color{DarkMagenta}{6}&\phantom{.}&\color{DarkMagenta}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&5&\phantom{.}&4\\\hline\phantom{lll}&&&&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$9$$$'s are in $$$60$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$60-9 \cdot 6 = 60 - 54= 6$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&6&6&.&6&\color{Green}{6}\end{array}&\\\color{Magenta}{9}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}6&0&0&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}5&4&\phantom{.}\\\hline\phantom{lll}&6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&5&4&\phantom{.}\\\hline\phantom{lll}&&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&5&\phantom{.}&4\\\hline\phantom{lll}&&&&\color{Green}{6}&\color{Green}{0}\\&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&5&4\\\hline\phantom{lll}&&&&&6\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{600}{9}=66. \overline{6}$$$
Answer: $$$\frac{600}{9}=66.\overline{6}$$$