Fraction to Decimal Calculator

Convert fractions to decimals step by step

The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{1300}{80}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{1}&\phantom{6}&\phantom{.}&\phantom{2}&\phantom{5}\end{array}&\\80&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&3&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$80$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-80 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Brown}{0}&\phantom{0}&\phantom{1}&\phantom{6}&\phantom{.}&\phantom{2}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Brown}{1}& 3 \downarrow&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$80$$$'s are in $$$13$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$13-80 \cdot 0 = 13 - 0= 13$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{DarkMagenta}{0}&\phantom{1}&\phantom{6}&\phantom{.}&\phantom{2}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&3& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkMagenta}{1}&\color{DarkMagenta}{3}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$80$$$'s are in $$$130$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$130-80 \cdot 1 = 130 - 80= 50$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{DarkBlue}{1}&\phantom{6}&\phantom{.}&\phantom{2}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&3&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DarkBlue}{1}&\color{DarkBlue}{3}&\color{DarkBlue}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&8&0&\phantom{.}\\\hline\phantom{lll}&5&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$80$$$'s are in $$$500$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$500-80 \cdot 6 = 500 - 480= 20$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&1&\color{Purple}{6}&\phantom{.}&\phantom{2}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&3&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&8&0&\phantom{.}\\\hline\phantom{lll}&\color{Purple}{5}&\color{Purple}{0}&\color{Purple}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$80$$$'s are in $$$200$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$200-80 \cdot 2 = 200 - 160= 40$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&1&6&.&\color{DarkCyan}{2}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&3&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&8&0&\phantom{.}\\\hline\phantom{lll}&5&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&8&0&\phantom{.}\\\hline\phantom{lll}&&\color{DarkCyan}{2}&\color{DarkCyan}{0}&\phantom{.}&\color{DarkCyan}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&6&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$80$$$'s are in $$$400$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$400-80 \cdot 5 = 400 - 400= 0$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&1&6&.&2&\color{Chartreuse}{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&3&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&8&0&\phantom{.}\\\hline\phantom{lll}&5&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&6&\phantom{.}&0\\\hline\phantom{lll}&&&\color{Chartreuse}{4}&\phantom{.}&\color{Chartreuse}{0}&\color{Chartreuse}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&0&0\\\hline\phantom{lll}&&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Since the remainder is $$$0$$$, then we are done.

Therefore, $$$\frac{1300}{80}=16.25$$$

Answer: $$$\frac{1300}{80}=16.25$$$


Please try a new game Rotatly