Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{5300}{60}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{8}&\phantom{8}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\60&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}5&3&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$60$$$'s are in $$$5$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$5-60 \cdot 0 = 5 - 0= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Brown}{0}&\phantom{0}&\phantom{8}&\phantom{8}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Brown}{5}& 3 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$60$$$'s are in $$$53$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$53-60 \cdot 0 = 53 - 0= 53$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{Crimson}{0}&\phantom{8}&\phantom{8}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}5&3& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Crimson}{5}&\color{Crimson}{3}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}5&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$60$$$'s are in $$$530$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$530-60 \cdot 8 = 530 - 480= 50$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{Red}{8}&\phantom{8}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}5&3&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Red}{5}&\color{Red}{3}&\color{Red}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&5&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$60$$$'s are in $$$500$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$500-60 \cdot 8 = 500 - 480= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&\color{GoldenRod}{8}&\phantom{.}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}5&3&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}5&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&\color{GoldenRod}{5}&\color{GoldenRod}{0}&\color{GoldenRod}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$60$$$'s are in $$$200$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$200-60 \cdot 3 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&8&.&\color{BlueViolet}{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}5&3&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}5&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&5&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&8&0&\phantom{.}\\\hline\phantom{lll}&&\color{BlueViolet}{2}&\color{BlueViolet}{0}&\phantom{.}&\color{BlueViolet}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&2&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$60$$$'s are in $$$200$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$200-60 \cdot 3 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&8&.&3&\color{Chocolate}{3}&\phantom{3}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}5&3&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}5&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&5&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&\color{Chocolate}{2}&\phantom{.}&\color{Chocolate}{0}&\color{Chocolate}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8&0\\\hline\phantom{lll}&&&&&2&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$60$$$'s are in $$$200$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$200-60 \cdot 3 = 200 - 180= 20$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&8&.&3&3&\color{Peru}{3}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}5&3&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}5&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&5&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&2&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8&0\\\hline\phantom{lll}&&&&&\color{Peru}{2}&\color{Peru}{0}&\color{Peru}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&8&0\\\hline\phantom{lll}&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{5300}{60}=88.3 \overline{3}$$$
Answer: $$$\frac{5300}{60}=88.3\overline{3}$$$