Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{4300}{60}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{7}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\60&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}4&3&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$60$$$'s are in $$$4$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$4-60 \cdot 0 = 4 - 0= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Crimson}{0}&\phantom{0}&\phantom{7}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Crimson}{4}& 3 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$60$$$'s are in $$$43$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$43-60 \cdot 0 = 43 - 0= 43$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{DarkCyan}{0}&\phantom{7}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&3& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkCyan}{4}&\color{DarkCyan}{3}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$60$$$'s are in $$$430$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$430-60 \cdot 7 = 430 - 420= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{GoldenRod}{7}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&3&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{GoldenRod}{4}&\color{GoldenRod}{3}&\color{GoldenRod}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$60$$$'s are in $$$100$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$100-60 \cdot 1 = 100 - 60= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&7&\color{Chartreuse}{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&3&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&2&0&\phantom{.}\\\hline\phantom{lll}&\color{Chartreuse}{1}&\color{Chartreuse}{0}&\color{Chartreuse}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&0&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$60$$$'s are in $$$400$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$400-60 \cdot 6 = 400 - 360= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&7&1&.&\color{Green}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&3&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&0&\phantom{.}\\\hline\phantom{lll}&&\color{Green}{4}&\color{Green}{0}&\phantom{.}&\color{Green}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&6&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$60$$$'s are in $$$400$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$400-60 \cdot 6 = 400 - 360= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&7&1&.&6&\color{SaddleBrown}{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&3&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&0&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&6&\phantom{.}&0\\\hline\phantom{lll}&&&\color{SaddleBrown}{4}&\phantom{.}&\color{SaddleBrown}{0}&\color{SaddleBrown}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&3&\phantom{.}&6&0\\\hline\phantom{lll}&&&&&4&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$60$$$'s are in $$$400$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$400-60 \cdot 6 = 400 - 360= 40$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&7&1&.&6&6&\color{Red}{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&3&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&0&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&6&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&3&\phantom{.}&6&0\\\hline\phantom{lll}&&&&&\color{Red}{4}&\color{Red}{0}&\color{Red}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&6&0\\\hline\phantom{lll}&&&&&&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{4300}{60}=71.6 \overline{6}$$$
Answer: $$$\frac{4300}{60}=71.6\overline{6}$$$