Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{900}{5}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{1}&\phantom{8}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\5&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}9&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$5$$$'s are in $$$9$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$9-5 \cdot 1 = 9 - 5= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\color{SaddleBrown}{1}&\phantom{8}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{5}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}\color{SaddleBrown}{9}& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&\phantom{.}\\\hline\phantom{lll}4&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$5$$$'s are in $$$40$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$40-5 \cdot 8 = 40 - 40= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}1&\color{Brown}{8}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{5}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}9&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&\phantom{.}\\\hline\phantom{lll}\color{Brown}{4}&\color{Brown}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&0&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$5$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-5 \cdot 0 = 0 - 0= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}1&8&\color{DarkMagenta}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{5}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}9&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&\phantom{.}\\\hline\phantom{lll}4&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&0&\phantom{.}\\\hline\phantom{lll}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$5$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-5 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}1&8&0&.&\color{Red}{0}\end{array}&\\\color{Magenta}{5}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}9&0&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&\phantom{.}\\\hline\phantom{lll}4&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&0&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&\color{Red}{0}&\phantom{.}&\color{Red}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{900}{5}=180.0$$$
Answer: $$$\frac{900}{5}=180.0$$$