Fraction to Decimal Calculator

Convert fractions to decimals step by step

The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{3100}{48}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{4}&\phantom{.}&\phantom{5}&\phantom{8}&\phantom{3}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\48&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}3&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$48$$$'s are in $$$3$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$3-48 \cdot 0 = 3 - 0= 3$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}\color{Red}{0}&\phantom{0}&\phantom{6}&\phantom{4}&\phantom{.}&\phantom{5}&\phantom{8}&\phantom{3}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}\color{Red}{3}& 1 \downarrow&0&0&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$48$$$'s are in $$$31$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$31-48 \cdot 0 = 31 - 0= 31$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&\color{Chartreuse}{0}&\phantom{6}&\phantom{4}&\phantom{.}&\phantom{5}&\phantom{8}&\phantom{3}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&1& 0 \downarrow&0&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Chartreuse}{3}&\color{Chartreuse}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$48$$$'s are in $$$310$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$310-48 \cdot 6 = 310 - 288= 22$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&\color{Violet}{6}&\phantom{4}&\phantom{.}&\phantom{5}&\phantom{8}&\phantom{3}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&1&0& 0 \downarrow&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Violet}{3}&\color{Violet}{1}&\color{Violet}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&2&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$48$$$'s are in $$$220$$$?

The answer is $$$4$$$.

Write down $$$4$$$ in the upper part of the table.

Now, $$$220-48 \cdot 4 = 220 - 192= 28$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&\color{Peru}{4}&\phantom{.}&\phantom{5}&\phantom{8}&\phantom{3}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&1&0&0&.& 0 \downarrow&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&\color{Peru}{2}&\color{Peru}{2}&\color{Peru}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&9&2&\phantom{.}\\\hline\phantom{lll}&&2&8&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$48$$$'s are in $$$280$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$280-48 \cdot 5 = 280 - 240= 40$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&4&.&\color{DarkMagenta}{5}&\phantom{8}&\phantom{3}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&1&0&0&.&0& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&2&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&9&2&\phantom{.}\\\hline\phantom{lll}&&\color{DarkMagenta}{2}&\color{DarkMagenta}{8}&\phantom{.}&\color{DarkMagenta}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$48$$$'s are in $$$400$$$?

The answer is $$$8$$$.

Write down $$$8$$$ in the upper part of the table.

Now, $$$400-48 \cdot 8 = 400 - 384= 16$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&4&.&5&\color{OrangeRed}{8}&\phantom{3}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&1&0&0&.&0&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&2&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&9&2&\phantom{.}\\\hline\phantom{lll}&&2&8&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}&0\\\hline\phantom{lll}&&&\color{OrangeRed}{4}&\phantom{.}&\color{OrangeRed}{0}&\color{OrangeRed}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&3&\phantom{.}&8&4\\\hline\phantom{lll}&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 7

How many $$$48$$$'s are in $$$160$$$?

The answer is $$$3$$$.

Write down $$$3$$$ in the upper part of the table.

Now, $$$160-48 \cdot 3 = 160 - 144= 16$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&4&.&5&8&\color{DeepPink}{3}&\phantom{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&1&0&0&.&0&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&2&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&9&2&\phantom{.}\\\hline\phantom{lll}&&2&8&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&3&\phantom{.}&8&4\\\hline\phantom{lll}&&&&&\color{DeepPink}{1}&\color{DeepPink}{6}&\color{DeepPink}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4&4\\\hline\phantom{lll}&&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 8

How many $$$48$$$'s are in $$$160$$$?

The answer is $$$3$$$.

Write down $$$3$$$ in the upper part of the table.

Now, $$$160-48 \cdot 3 = 160 - 144= 16$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&4&.&5&8&3&\color{BlueViolet}{3}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&1&0&0&.&0&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&2&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&9&2&\phantom{.}\\\hline\phantom{lll}&&2&8&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&3&\phantom{.}&8&4\\\hline\phantom{lll}&&&&&1&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4&4\\\hline\phantom{lll}&&&&&&\color{BlueViolet}{1}&\color{BlueViolet}{6}&\color{BlueViolet}{0}\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4&4\\\hline\phantom{lll}&&&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 9

How many $$$48$$$'s are in $$$160$$$?

The answer is $$$3$$$.

Write down $$$3$$$ in the upper part of the table.

Now, $$$160-48 \cdot 3 = 160 - 144= 16$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&4&.&5&8&3&3&\color{DarkBlue}{3}&\phantom{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&1&0&0&.&0&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&2&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&9&2&\phantom{.}\\\hline\phantom{lll}&&2&8&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&3&\phantom{.}&8&4\\\hline\phantom{lll}&&&&&1&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4&4\\\hline\phantom{lll}&&&&&&1&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4&4\\\hline\phantom{lll}&&&&&&&\color{DarkBlue}{1}&\color{DarkBlue}{6}&\color{DarkBlue}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&4&4\\\hline\phantom{lll}&&&&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 10

How many $$$48$$$'s are in $$$160$$$?

The answer is $$$3$$$.

Write down $$$3$$$ in the upper part of the table.

Now, $$$160-48 \cdot 3 = 160 - 144= 16$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&4&.&5&8&3&3&3&\color{Purple}{3}\end{array}&\\\color{Magenta}{48}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}3&1&0&0&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&8&8&\phantom{.}\\\hline\phantom{lll}&2&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&9&2&\phantom{.}\\\hline\phantom{lll}&&2&8&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&3&\phantom{.}&8&4\\\hline\phantom{lll}&&&&&1&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4&4\\\hline\phantom{lll}&&&&&&1&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4&4\\\hline\phantom{lll}&&&&&&&1&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&4&4\\\hline\phantom{lll}&&&&&&&&\color{Purple}{1}&\color{Purple}{6}&\color{Purple}{0}\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&4&4\\\hline\phantom{lll}&&&&&&&&&1&6\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{3100}{48}=64.5833 \overline{3}$$$

Answer: $$$\frac{3100}{48}=64.5833\overline{3}$$$


Please try a new game Rotatly