Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{3800}{45}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{8}&\phantom{4}&\phantom{.}&\phantom{4}&\phantom{4}&\phantom{4}\end{array}&\\45&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}3&8&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$45$$$'s are in $$$3$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$3-45 \cdot 0 = 3 - 0= 3$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Green}{0}&\phantom{0}&\phantom{8}&\phantom{4}&\phantom{.}&\phantom{4}&\phantom{4}&\phantom{4}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Green}{3}& 8 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&8&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$45$$$'s are in $$$38$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$38-45 \cdot 0 = 38 - 0= 38$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{Blue}{0}&\phantom{8}&\phantom{4}&\phantom{.}&\phantom{4}&\phantom{4}&\phantom{4}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}3&8& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Blue}{3}&\color{Blue}{8}&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$45$$$'s are in $$$380$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$380-45 \cdot 8 = 380 - 360= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{SaddleBrown}{8}&\phantom{4}&\phantom{.}&\phantom{4}&\phantom{4}&\phantom{4}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}3&8&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&8&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{SaddleBrown}{3}&\color{SaddleBrown}{8}&\color{SaddleBrown}{0}&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$45$$$'s are in $$$200$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$200-45 \cdot 4 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&\color{DarkMagenta}{4}&\phantom{.}&\phantom{4}&\phantom{4}&\phantom{4}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}3&8&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&8&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&0&\phantom{.}\\\hline\phantom{lll}&\color{DarkMagenta}{2}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$45$$$'s are in $$$200$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$200-45 \cdot 4 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&4&.&\color{Violet}{4}&\phantom{4}&\phantom{4}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}3&8&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&8&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&\color{Violet}{2}&\color{Violet}{0}&\phantom{.}&\color{Violet}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&2&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$45$$$'s are in $$$200$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$200-45 \cdot 4 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&4&.&4&\color{Red}{4}&\phantom{4}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}3&8&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&8&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&\color{Red}{2}&\phantom{.}&\color{Red}{0}&\color{Red}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8&0\\\hline\phantom{lll}&&&&&2&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$45$$$'s are in $$$200$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$200-45 \cdot 4 = 200 - 180= 20$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&4&.&4&4&\color{Brown}{4}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}3&8&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&8&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\\-&\phantom{8}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&2&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8&0\\\hline\phantom{lll}&&&&&\color{Brown}{2}&\color{Brown}{0}&\color{Brown}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&8&0\\\hline\phantom{lll}&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{3800}{45}=84.4 \overline{4}$$$
Answer: $$$\frac{3800}{45}=84.4\overline{4}$$$