Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{2500}{45}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{5}&\phantom{5}&\phantom{.}&\phantom{5}&\phantom{5}&\phantom{5}\end{array}&\\45&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}2&5&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$45$$$'s are in $$$2$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$2-45 \cdot 0 = 2 - 0= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{5}&\phantom{5}&\phantom{.}&\phantom{5}&\phantom{5}&\phantom{5}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Chartreuse}{2}& 5 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$45$$$'s are in $$$25$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$25-45 \cdot 0 = 25 - 0= 25$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{Green}{0}&\phantom{5}&\phantom{5}&\phantom{.}&\phantom{5}&\phantom{5}&\phantom{5}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}2&5& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{2}&\color{Green}{5}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$45$$$'s are in $$$250$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$250-45 \cdot 5 = 250 - 225= 25$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{Purple}{5}&\phantom{5}&\phantom{.}&\phantom{5}&\phantom{5}&\phantom{5}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}2&5&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{2}&\color{Purple}{5}&\color{Purple}{0}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}2&2&5&\phantom{.}\\\hline\phantom{lll}&2&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$45$$$'s are in $$$250$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$250-45 \cdot 5 = 250 - 225= 25$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&5&\color{Violet}{5}&\phantom{.}&\phantom{5}&\phantom{5}&\phantom{5}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}2&5&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}2&2&5&\phantom{.}\\\hline\phantom{lll}&\color{Violet}{2}&\color{Violet}{5}&\color{Violet}{0}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&2&5&\phantom{.}\\\hline\phantom{lll}&&2&5&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$45$$$'s are in $$$250$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$250-45 \cdot 5 = 250 - 225= 25$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&5&5&.&\color{Brown}{5}&\phantom{5}&\phantom{5}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}2&5&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}2&2&5&\phantom{.}\\\hline\phantom{lll}&2&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&2&5&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{2}&\color{Brown}{5}&\phantom{.}&\color{Brown}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&2&\phantom{.}&5\\\hline\phantom{lll}&&&2&\phantom{.}&5&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$45$$$'s are in $$$250$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$250-45 \cdot 5 = 250 - 225= 25$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&5&5&.&5&\color{Blue}{5}&\phantom{5}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}2&5&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}2&2&5&\phantom{.}\\\hline\phantom{lll}&2&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&2&5&\phantom{.}\\\hline\phantom{lll}&&2&5&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&2&\phantom{.}&5\\\hline\phantom{lll}&&&\color{Blue}{2}&\phantom{.}&\color{Blue}{5}&\color{Blue}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&2&\phantom{.}&2&5\\\hline\phantom{lll}&&&&&2&5&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$45$$$'s are in $$$250$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$250-45 \cdot 5 = 250 - 225= 25$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&5&5&.&5&5&\color{Peru}{5}\end{array}&\\\color{Magenta}{45}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}2&5&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}2&2&5&\phantom{.}\\\hline\phantom{lll}&2&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&2&5&\phantom{.}\\\hline\phantom{lll}&&2&5&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&2&\phantom{.}&5\\\hline\phantom{lll}&&&2&\phantom{.}&5&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&2&\phantom{.}&2&5\\\hline\phantom{lll}&&&&&\color{Peru}{2}&\color{Peru}{5}&\color{Peru}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&2&2&5\\\hline\phantom{lll}&&&&&&2&5\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{2500}{45}=55.5 \overline{5}$$$
Answer: $$$\frac{2500}{45}=55.5\overline{5}$$$