Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{4100}{42}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{9}&\phantom{7}&\phantom{.}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\42&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}4&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$42$$$'s are in $$$4$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$4-42 \cdot 0 = 4 - 0= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{9}&\phantom{7}&\phantom{.}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}\color{Chartreuse}{4}& 1 \downarrow&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$42$$$'s are in $$$41$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$41-42 \cdot 0 = 41 - 0= 41$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&\color{Green}{0}&\phantom{9}&\phantom{7}&\phantom{.}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1& 0 \downarrow&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{4}&\color{Green}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$42$$$'s are in $$$410$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$410-42 \cdot 9 = 410 - 378= 32$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&\color{Purple}{9}&\phantom{7}&\phantom{.}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0& 0 \downarrow&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{4}&\color{Purple}{1}&\color{Purple}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$42$$$'s are in $$$320$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$320-42 \cdot 7 = 320 - 294= 26$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&\color{Violet}{7}&\phantom{.}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.& 0 \downarrow&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&\color{Violet}{3}&\color{Violet}{2}&\color{Violet}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$42$$$'s are in $$$260$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$260-42 \cdot 6 = 260 - 252= 8$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&\color{Brown}{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0& 0 \downarrow&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{2}&\color{Brown}{6}&\phantom{.}&\color{Brown}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$42$$$'s are in $$$80$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$80-42 \cdot 1 = 80 - 42= 38$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&\color{Blue}{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0& 0 \downarrow&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&\color{Blue}{8}&\color{Blue}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$42$$$'s are in $$$380$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$380-42 \cdot 9 = 380 - 378= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&\color{Peru}{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0& 0 \downarrow&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&\color{Peru}{3}&\color{Peru}{8}&\color{Peru}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 8
How many $$$42$$$'s are in $$$20$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$20-42 \cdot 0 = 20 - 0= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&\color{Fuchsia}{0}&\phantom{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0& 0 \downarrow&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&\color{Fuchsia}{2}&\color{Fuchsia}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 9
How many $$$42$$$'s are in $$$200$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$200-42 \cdot 4 = 200 - 168= 32$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&0&\color{DarkCyan}{4}&\phantom{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0&0& 0 \downarrow&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&\color{DarkCyan}{2}&\color{DarkCyan}{0}&\color{DarkCyan}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&3&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 10
How many $$$42$$$'s are in $$$320$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$320-42 \cdot 7 = 320 - 294= 26$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&0&4&\color{DarkBlue}{7}&\phantom{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0&0&0& 0 \downarrow&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&\color{DarkBlue}{3}&\color{DarkBlue}{2}&\color{DarkBlue}{0}\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&2&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 11
How many $$$42$$$'s are in $$$260$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$260-42 \cdot 6 = 260 - 252= 8$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&0&4&7&\color{SaddleBrown}{6}&\phantom{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0&0&0&0& 0 \downarrow&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&3&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&\color{SaddleBrown}{2}&\color{SaddleBrown}{6}&\color{SaddleBrown}{0}\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&2&5&2\\\hline\phantom{lll}&&&&&&&&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 12
How many $$$42$$$'s are in $$$80$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$80-42 \cdot 1 = 80 - 42= 38$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&0&4&7&6&\color{GoldenRod}{1}&\phantom{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0&0&0&0&0& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&3&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&2&6&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&2&5&2\\\hline\phantom{lll}&&&&&&&&&&&\color{GoldenRod}{8}&\color{GoldenRod}{0}\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&4&2\\\hline\phantom{lll}&&&&&&&&&&&3&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 13
How many $$$42$$$'s are in $$$380$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$380-42 \cdot 9 = 380 - 378= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&0&4&7&6&1&\color{Chocolate}{9}&\phantom{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0&0&0&0&0&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&3&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&2&6&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&2&5&2\\\hline\phantom{lll}&&&&&&&&&&&8&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&4&2\\\hline\phantom{lll}&&&&&&&&&&&\color{Chocolate}{3}&\color{Chocolate}{8}&\color{Chocolate}{0}\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 14
How many $$$42$$$'s are in $$$20$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$20-42 \cdot 0 = 20 - 0= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&0&4&7&6&1&9&\color{OrangeRed}{0}&\phantom{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0&0&0&0&0&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&3&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&2&6&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&2&5&2\\\hline\phantom{lll}&&&&&&&&&&&8&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&4&2\\\hline\phantom{lll}&&&&&&&&&&&3&8&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&&&&&&&\color{OrangeRed}{2}&\color{OrangeRed}{0}\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&&&&2&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 15
How many $$$42$$$'s are in $$$200$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$200-42 \cdot 4 = 200 - 168= 32$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&0&4&7&6&1&9&0&\color{DeepPink}{4}&\phantom{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0&0&0&0&0&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&3&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&2&6&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&2&5&2\\\hline\phantom{lll}&&&&&&&&&&&8&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&4&2\\\hline\phantom{lll}&&&&&&&&&&&3&8&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&&&&&&&2&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&&&&\color{DeepPink}{2}&\color{DeepPink}{0}&\color{DeepPink}{0}\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&&&&&&&3&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 16
How many $$$42$$$'s are in $$$320$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$320-42 \cdot 7 = 320 - 294= 26$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&0&4&7&6&1&9&0&4&\color{Red}{7}&\phantom{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&3&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&2&6&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&2&5&2\\\hline\phantom{lll}&&&&&&&&&&&8&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&4&2\\\hline\phantom{lll}&&&&&&&&&&&3&8&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&&&&&&&2&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&&&&2&0&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&&&&&&&\color{Red}{3}&\color{Red}{2}&\color{Red}{0}\\&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&&&&&&&2&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 17
How many $$$42$$$'s are in $$$260$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$260-42 \cdot 6 = 260 - 252= 8$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccccccccccc}0&0&9&7&.&6&1&9&0&4&7&6&1&9&0&4&7&\color{BlueViolet}{6}\end{array}&\\\color{Magenta}{42}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccccccccccc}4&1&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllllllllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&7&8&\phantom{.}\\\hline\phantom{lll}&3&2&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&2&9&4&\phantom{.}\\\hline\phantom{lll}&&2&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&5&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&4&2\\\hline\phantom{lll}&&&&&3&8&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&0\\\hline\phantom{lll}&&&&&&&2&0&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&3&2&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&2&6&0\\&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&2&5&2\\\hline\phantom{lll}&&&&&&&&&&&8&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&4&2\\\hline\phantom{lll}&&&&&&&&&&&3&8&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&3&7&8\\\hline\phantom{lll}&&&&&&&&&&&&&2&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&&&&2&0&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&1&6&8\\\hline\phantom{lll}&&&&&&&&&&&&&&3&2&0\\&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&2&9&4\\\hline\phantom{lll}&&&&&&&&&&&&&&&\color{BlueViolet}{2}&\color{BlueViolet}{6}&\color{BlueViolet}{0}\\&&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&&2&5&2\\\hline\phantom{lll}&&&&&&&&&&&&&&&&&8\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{4100}{42}=97.6 \overline{190476}$$$
Answer: $$$\frac{4100}{42}=97.6\overline{190476}$$$