Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{100}{3000}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{0}&\phantom{.}&\phantom{0}&\phantom{3}&\phantom{3}\end{array}&\\3000&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}1&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$3000$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-3000 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Fuchsia}{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{3000}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Fuchsia}{1}& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$3000$$$'s are in $$$10$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$10-3000 \cdot 0 = 10 - 0= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{Peru}{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{3000}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Peru}{1}&\color{Peru}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$3000$$$'s are in $$$100$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$100-3000 \cdot 0 = 100 - 0= 100$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{DeepPink}{0}&\phantom{.}&\phantom{0}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{3000}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DeepPink}{1}&\color{DeepPink}{0}&\color{DeepPink}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$3000$$$'s are in $$$1000$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1000-3000 \cdot 0 = 1000 - 0= 1000$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&.&\color{Chocolate}{0}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{3000}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}\color{Chocolate}{1}&\color{Chocolate}{0}&\color{Chocolate}{0}&\phantom{.}&\color{Chocolate}{0}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}1&0&0&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$3000$$$'s are in $$$10000$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$10000-3000 \cdot 3 = 10000 - 9000= 1000$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&.&0&\color{Chartreuse}{3}&\phantom{3}\end{array}&\\\color{Magenta}{3000}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}\color{Chartreuse}{1}&\color{Chartreuse}{0}&\color{Chartreuse}{0}&\phantom{.}&\color{Chartreuse}{0}&\color{Chartreuse}{0}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&0&0&\phantom{.}&0\\\hline\phantom{lll}&1&0&\phantom{.}&0&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$3000$$$'s are in $$$10000$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$10000-3000 \cdot 3 = 10000 - 9000= 1000$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&.&0&3&\color{OrangeRed}{3}\end{array}&\\\color{Magenta}{3000}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&0&0&.&0&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}1&0&0&\phantom{.}&0&0\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&0&0&\phantom{.}&0\\\hline\phantom{lll}&\color{OrangeRed}{1}&\color{OrangeRed}{0}&\phantom{.}&\color{OrangeRed}{0}&\color{OrangeRed}{0}&\color{OrangeRed}{0}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}&0&0\\\hline\phantom{lll}&&1&\phantom{.}&0&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{100}{3000}=0.0 \overline{3}$$$
Answer: $$$\frac{100}{3000}=0.0\overline{3}$$$