Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{2900}{30}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{9}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\30&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}2&9&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$30$$$'s are in $$$2$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$2-30 \cdot 0 = 2 - 0= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{9}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Chartreuse}{2}& 9 \downarrow&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&9&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$30$$$'s are in $$$29$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$29-30 \cdot 0 = 29 - 0= 29$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{Green}{0}&\phantom{9}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&9& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{2}&\color{Green}{9}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&9&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$30$$$'s are in $$$290$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$290-30 \cdot 9 = 290 - 270= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{Purple}{9}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&9&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{2}&\color{Purple}{9}&\color{Purple}{0}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&7&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$30$$$'s are in $$$200$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$200-30 \cdot 6 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&9&\color{Violet}{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&9&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&7&0&\phantom{.}\\\hline\phantom{lll}&\color{Violet}{2}&\color{Violet}{0}&\color{Violet}{0}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$30$$$'s are in $$$200$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$200-30 \cdot 6 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&9&6&.&\color{Brown}{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&9&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&7&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{2}&\color{Brown}{0}&\phantom{.}&\color{Brown}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&2&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$30$$$'s are in $$$200$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$200-30 \cdot 6 = 200 - 180= 20$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&9&6&.&6&\color{Blue}{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&9&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&7&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&\color{Blue}{2}&\phantom{.}&\color{Blue}{0}&\color{Blue}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8&0\\\hline\phantom{lll}&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{2900}{30}=96. \overline{6}$$$
Answer: $$$\frac{2900}{30}=96.\overline{6}$$$