Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{2600}{30}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\30&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}2&6&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$30$$$'s are in $$$2$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$2-30 \cdot 0 = 2 - 0= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Peru}{0}&\phantom{0}&\phantom{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Peru}{2}& 6 \downarrow&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&6&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$30$$$'s are in $$$26$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$26-30 \cdot 0 = 26 - 0= 26$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{DeepPink}{0}&\phantom{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&6& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DeepPink}{2}&\color{DeepPink}{6}&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$30$$$'s are in $$$260$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$260-30 \cdot 8 = 260 - 240= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{Chartreuse}{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&6&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&6&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Chartreuse}{2}&\color{Chartreuse}{6}&\color{Chartreuse}{0}&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&4&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$30$$$'s are in $$$200$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$200-30 \cdot 6 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&8&\color{GoldenRod}{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&6&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&6&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&6&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&4&0&\phantom{.}\\\hline\phantom{lll}&\color{GoldenRod}{2}&\color{GoldenRod}{0}&\color{GoldenRod}{0}&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$30$$$'s are in $$$200$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$200-30 \cdot 6 = 200 - 180= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&8&6&.&\color{Red}{6}&\phantom{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&6&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&6&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&6&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&4&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&\color{Red}{2}&\color{Red}{0}&\phantom{.}&\color{Red}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&2&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$30$$$'s are in $$$200$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$200-30 \cdot 6 = 200 - 180= 20$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&8&6&.&6&\color{OrangeRed}{6}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}2&6&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&6&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&6&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}2&4&0&\phantom{.}\\\hline\phantom{lll}&2&0&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&0&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}&0\\\hline\phantom{lll}&&&\color{OrangeRed}{2}&\phantom{.}&\color{OrangeRed}{0}&\color{OrangeRed}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8&0\\\hline\phantom{lll}&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{2600}{30}=86. \overline{6}$$$
Answer: $$$\frac{2600}{30}=86.\overline{6}$$$