Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{1600}{30}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{5}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\30&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&6&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$30$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-30 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{5}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Chartreuse}{1}& 6 \downarrow&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&6&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$30$$$'s are in $$$16$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$16-30 \cdot 0 = 16 - 0= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{Green}{0}&\phantom{5}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&6& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{6}&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$30$$$'s are in $$$160$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$160-30 \cdot 5 = 160 - 150= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{Purple}{5}&\phantom{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&6&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&6&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{1}&\color{Purple}{6}&\color{Purple}{0}&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&5&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$30$$$'s are in $$$100$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$100-30 \cdot 3 = 100 - 90= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&5&\color{Violet}{3}&\phantom{.}&\phantom{3}&\phantom{3}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&6&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&6&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&6&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&5&0&\phantom{.}\\\hline\phantom{lll}&\color{Violet}{1}&\color{Violet}{0}&\color{Violet}{0}&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$30$$$'s are in $$$100$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$100-30 \cdot 3 = 100 - 90= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&5&3&.&\color{Brown}{3}&\phantom{3}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&6&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&6&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&6&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&5&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{1}&\color{Brown}{0}&\phantom{.}&\color{Brown}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$30$$$'s are in $$$100$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$100-30 \cdot 3 = 100 - 90= 10$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&5&3&.&3&\color{Blue}{3}\end{array}&\\\color{Magenta}{30}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&6&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&6&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&6&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&5&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{6}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0\\\hline\phantom{lll}&&&\color{Blue}{1}&\phantom{.}&\color{Blue}{0}&\color{Blue}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&0\\\hline\phantom{lll}&&&&&1&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1600}{30}=53. \overline{3}$$$
Answer: $$$\frac{1600}{30}=53.\overline{3}$$$