Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{200}{3}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\3&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}2&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$3$$$'s are in $$$2$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$2-3 \cdot 0 = 2 - 0= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{DarkCyan}{0}&\phantom{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{DarkCyan}{2}& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$3$$$'s are in $$$20$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$20-3 \cdot 6 = 20 - 18= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{DeepPink}{6}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}2&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DeepPink}{2}&\color{DeepPink}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&8&\phantom{.}\\\hline\phantom{lll}&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$3$$$'s are in $$$20$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$20-3 \cdot 6 = 20 - 18= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&6&\color{BlueViolet}{6}&\phantom{.}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}2&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&8&\phantom{.}\\\hline\phantom{lll}&\color{BlueViolet}{2}&\color{BlueViolet}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&\phantom{.}\\\hline\phantom{lll}&&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$3$$$'s are in $$$20$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$20-3 \cdot 6 = 20 - 18= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&6&6&.&\color{Chocolate}{6}&\phantom{6}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}2&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&8&\phantom{.}\\\hline\phantom{lll}&2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&\phantom{.}\\\hline\phantom{lll}&&\color{Chocolate}{2}&\phantom{.}&\color{Chocolate}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&\phantom{.}&8\\\hline\phantom{lll}&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$3$$$'s are in $$$20$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$20-3 \cdot 6 = 20 - 18= 2$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&6&6&.&6&\color{Purple}{6}\end{array}&\\\color{Magenta}{3}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}2&0&0&.&0&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}1&8&\phantom{.}\\\hline\phantom{lll}&2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&8&\phantom{.}\\\hline\phantom{lll}&&2&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&\phantom{.}&8\\\hline\phantom{lll}&&&&\color{Purple}{2}&\color{Purple}{0}\\&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&1&8\\\hline\phantom{lll}&&&&&2\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{200}{3}=66. \overline{6}$$$
Answer: $$$\frac{200}{3}=66.\overline{6}$$$