Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{2200}{24}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{9}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\24&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}2&2&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$24$$$'s are in $$$2$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$2-24 \cdot 0 = 2 - 0= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}\color{Peru}{0}&\phantom{0}&\phantom{9}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}\color{Peru}{2}& 2 \downarrow&0&0&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&2&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$24$$$'s are in $$$22$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$22-24 \cdot 0 = 22 - 0= 22$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&\color{SaddleBrown}{0}&\phantom{9}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&2& 0 \downarrow&0&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{SaddleBrown}{2}&\color{SaddleBrown}{2}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$24$$$'s are in $$$220$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$220-24 \cdot 9 = 220 - 216= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&\color{OrangeRed}{9}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&2&0& 0 \downarrow&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{OrangeRed}{2}&\color{OrangeRed}{2}&\color{OrangeRed}{0}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&1&6&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$24$$$'s are in $$$40$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$40-24 \cdot 1 = 40 - 24= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&\color{Chocolate}{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&2&0&0&.& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&1&6&\phantom{.}\\\hline\phantom{lll}&&\color{Chocolate}{4}&\color{Chocolate}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$24$$$'s are in $$$160$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$160-24 \cdot 6 = 160 - 144= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&1&.&\color{Purple}{6}&\phantom{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&2&0&0&.&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&1&6&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}\\\hline\phantom{lll}&&\color{Purple}{1}&\color{Purple}{6}&\phantom{.}&\color{Purple}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&4&\phantom{.}&4\\\hline\phantom{lll}&&&1&\phantom{.}&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$24$$$'s are in $$$160$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$160-24 \cdot 6 = 160 - 144= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&1&.&6&\color{Fuchsia}{6}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&2&0&0&.&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&1&6&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&4&\phantom{.}&4\\\hline\phantom{lll}&&&\color{Fuchsia}{1}&\phantom{.}&\color{Fuchsia}{6}&\color{Fuchsia}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&4&4\\\hline\phantom{lll}&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$24$$$'s are in $$$160$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$160-24 \cdot 6 = 160 - 144= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&1&.&6&6&\color{Red}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&2&0&0&.&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&1&6&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&4&\phantom{.}&4\\\hline\phantom{lll}&&&1&\phantom{.}&6&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&4&4\\\hline\phantom{lll}&&&&&\color{Red}{1}&\color{Red}{6}&\color{Red}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4&4\\\hline\phantom{lll}&&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 8
How many $$$24$$$'s are in $$$160$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$160-24 \cdot 6 = 160 - 144= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&1&.&6&6&6&\color{BlueViolet}{6}&\phantom{6}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&2&0&0&.&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&1&6&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&4&\phantom{.}&4\\\hline\phantom{lll}&&&1&\phantom{.}&6&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&4&4\\\hline\phantom{lll}&&&&&1&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4&4\\\hline\phantom{lll}&&&&&&\color{BlueViolet}{1}&\color{BlueViolet}{6}&\color{BlueViolet}{0}\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4&4\\\hline\phantom{lll}&&&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 9
How many $$$24$$$'s are in $$$160$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$160-24 \cdot 6 = 160 - 144= 16$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&9&1&.&6&6&6&6&\color{Chartreuse}{6}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}2&2&0&0&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&2&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&1&6&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&2&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&4&\phantom{.}&4\\\hline\phantom{lll}&&&1&\phantom{.}&6&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&4&4\\\hline\phantom{lll}&&&&&1&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&4&4\\\hline\phantom{lll}&&&&&&1&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&4&4\\\hline\phantom{lll}&&&&&&&\color{Chartreuse}{1}&\color{Chartreuse}{6}&\color{Chartreuse}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&4&4\\\hline\phantom{lll}&&&&&&&&1&6\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{2200}{24}=91.666 \overline{6}$$$
Answer: $$$\frac{2200}{24}=91.666\overline{6}$$$