Fraction to Decimal Calculator

Convert fractions to decimals step by step

The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{12300}{200}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\phantom{6}&\phantom{1}&\phantom{.}&\phantom{5}\end{array}&\\200&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}1&2&3&0&0\end{array}}&\\&\begin{array}{lllll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$200$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-200 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Red}{0}&\phantom{0}&\phantom{0}&\phantom{6}&\phantom{1}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Red}{1}& 2 \downarrow&3&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$200$$$'s are in $$$12$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$12-200 \cdot 0 = 12 - 0= 12$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{Crimson}{0}&\phantom{0}&\phantom{6}&\phantom{1}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2& 3 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Crimson}{1}&\color{Crimson}{2}&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$200$$$'s are in $$$123$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$123-200 \cdot 0 = 123 - 0= 123$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{Chartreuse}{0}&\phantom{6}&\phantom{1}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2&3& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Chartreuse}{1}&\color{Chartreuse}{2}&\color{Chartreuse}{3}&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&2&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$200$$$'s are in $$$1230$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$1230-200 \cdot 6 = 1230 - 1200= 30$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&\color{BlueViolet}{6}&\phantom{1}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2&3&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&3&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}\color{BlueViolet}{1}&\color{BlueViolet}{2}&\color{BlueViolet}{3}&\color{BlueViolet}{0}&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&0&0&\phantom{.}\\\hline\phantom{lll}&&3&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$200$$$'s are in $$$300$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$300-200 \cdot 1 = 300 - 200= 100$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&6&\color{DarkCyan}{1}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2&3&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&3&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&2&3&0&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&0&0&\phantom{.}\\\hline\phantom{lll}&&\color{DarkCyan}{3}&\color{DarkCyan}{0}&\color{DarkCyan}{0}&\phantom{.}\\&-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&2&0&0&\phantom{.}\\\hline\phantom{lll}&&1&0&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$200$$$'s are in $$$1000$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$1000-200 \cdot 5 = 1000 - 1000= 0$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&6&1&.&\color{DarkMagenta}{5}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&2&3&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&2&3&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&2&3&0&\phantom{.}\\-&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&0&0&\phantom{.}\\\hline\phantom{lll}&&3&0&0&\phantom{.}\\&-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&2&0&0&\phantom{.}\\\hline\phantom{lll}&&\color{DarkMagenta}{1}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}&\phantom{.}&\color{DarkMagenta}{0}\\&-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&1&0&0&\phantom{.}&0\\\hline\phantom{lll}&&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Since the remainder is $$$0$$$, then we are done.

Therefore, $$$\frac{12300}{200}=61.5$$$

Answer: $$$\frac{12300}{200}=61.5$$$


Please try a new game Rotatly